dc.creatorSantos T.O.
dc.creatorLaunay J.C.
dc.creatorFrejlich J.
dc.date2008
dc.date2015-06-30T19:18:05Z
dc.date2015-11-26T14:41:37Z
dc.date2015-06-30T19:18:05Z
dc.date2015-11-26T14:41:37Z
dc.date.accessioned2018-03-28T21:48:41Z
dc.date.available2018-03-28T21:48:41Z
dc.identifier9780735405110
dc.identifierAip Conference Proceedings. , v. 992, n. , p. 695 - 698, 2008.
dc.identifier0094243X
dc.identifier10.1063/1.2926953
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-43649104400&partnerID=40&md5=ccfe84a2bcdbe1baed2c8b78f46a99e8
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105657
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105657
dc.identifier2-s2.0-43649104400
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250922
dc.descriptionWe report the use of the photo-electromotive force (photo-emf) effect produced by a vibrating speckle pattern of light, generated by laser radiation at 1064nm, in the volume of a photorefractive vanadium doped CdTe crystal. This effect is used to measure the sample's photocondutivity and the vibration amplitude of the pattern of light. When the vibrations are much faster than the photorefractive material reponse time the photocurrent is independent of the response time. The theoretical model predicts a maximum value for the first temporal harmonic term of the photocurrent at a fixed value for the vibration amplitude-to-speckle size ratio. This prediction was experimentally confirmed and this maximum can be used to calibrate the setup in order to facilitate practical applications. © 2008 American Institute of Physics.
dc.description992
dc.description
dc.description695
dc.description698
dc.descriptionStepanov, S., Sokolov, I., Trofimov, G., Vlad, V., Popa, D., Apostol, I., (1990) Opt. Lett, 15, pp. 1239-1241
dc.descriptionKorneev, N.A., Stepanov, S., (1993) J.Appl.Phys, 74, pp. 2736-2741
dc.descriptionSokolov, I.A., Stepanov, S.I., (1993) J. Opt. Soc. Am. B, 10, pp. 1483-1488
dc.descriptionS.I. Stepanov, Reports on Prog. Phys. 57, 39-116 (1994)Leiva, L.A.M., Frejlich, J., (2004) J. Opt. A: Pure and Appl. Opt, 6, pp. 1001-1004
dc.descriptionPetrov, M.P., Sokolov, I.A., Stepanov, S.I., Trofimov, G.S., (1990) J. Appl. Phys, 68, pp. 2216-2225
dc.descriptionM. Bryushinin, V. Kulikov, and I. Sokolov, Phys. Rev. B 65, 2452041-6 (2002)Korneev, N.A., Stepanov, S.I., (1991) J. Mod. Optics, 38, pp. 2153-2158
dc.descriptionTrofimov, G.S., Stepanov, S.I., (1986) Sov. Phys. Solid State, 28, pp. 1559-1562
dc.descriptionStepanov, S.I., (1994) Applied Optics, 32, pp. 915-920
dc.descriptionS.I.Stepanov, Photo-electromotive-force effect in semiconductors, in Semiconductor Devices, edited by H.S.Nalwa, Academic Press, 2001, 2 of Handbook of Advanced Electronic and Photonic Materials and Devices, chap. 6, pp. 205-272Mansurova, S., Seres, I., Rodríguez, P., Stepanov, S., Trivedi, S., (1999) CLEO, p. 509
dc.descriptionStepanov, S.I., Rodriguez, P., Mansurova, S., Arroyo, M.L., Trivedi, S., Wang, C.C., (2007) Optical material, 29, pp. 623-630
dc.descriptionFrejlich, J., (2006) Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization, , Wiley-Interscience New York
dc.descriptionBelansky, R., Wanser, K., (1993) Am. J. Phys, 61, pp. 1014-1019
dc.languageen
dc.publisher
dc.relationAIP Conference Proceedings
dc.rightsaberto
dc.sourceScopus
dc.titlePhoto-electromotive-force From Vibrating Speckled Pattern Of Light On Photorefractive Cdte:v
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución