dc.creatorBorges L.
dc.creatorBigarella C.L.
dc.creatorBaratti M.O.
dc.creatorCrosara-Alberto D.P.
dc.creatorJoazeiro P.P.
dc.creatorFranchini K.G.
dc.creatorCosta F.F.
dc.creatorSaad S.T.O.
dc.date2008
dc.date2015-06-30T19:17:42Z
dc.date2015-11-26T14:41:35Z
dc.date2015-06-30T19:17:42Z
dc.date2015-11-26T14:41:35Z
dc.date.accessioned2018-03-28T21:48:38Z
dc.date.available2018-03-28T21:48:38Z
dc.identifier
dc.identifierBiochemical And Biophysical Research Communications. , v. 374, n. 4, p. 641 - 646, 2008.
dc.identifier0006291X
dc.identifier10.1016/j.bbrc.2008.07.085
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-49449087249&partnerID=40&md5=acbd9d69d9e43cd84fce96cdc80fdab6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105621
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105621
dc.identifier2-s2.0-49449087249
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250911
dc.descriptionARHGAP21 is highly expressed in the heart, which demonstrates activity over Cdc42 and interacts with proteins of the cytoskeleton and adherent junctions. The main cause of cardiac hypertrophy is mechanical stimulus; therefore we analyzed ARHGAP21 expression after acute mechanical stress in the myocardium and its association with FAK and PKCζ. We demonstrated that ARHGAP21 is relocated to Z-lines and costameres after pressure overload, and interacts with PKCζ and FAK in control rats (sham), rats submitted to aortic clamping and spontaneously hypertensive rats (SHR). Co-transfection using ARHGAP21 and PKCζ constructions demonstrated that ARHGAP21 associates with PKCζ-GST and endogenous FAK. Pulldown assay showed that ARHGAP21 binds to the C-terminal region of FAK. Moreover, ARHGAP21 binds to PKCζ phosphorylated on Thr410 in sham and SHR. However, ARHGAP21 only binds to FAK phosphorylated on Tyr925 of SHR. Additionally, PKCζ is phosphorylated by mechanical stimuli. These results suggest that ARHGAP21 may act as a signaling or scaffold protein of FAK and PKCζ signaling pathways, developing an important function during cardiac stress. © 2008 Elsevier Inc. All rights reserved.
dc.description374
dc.description4
dc.description641
dc.description646
dc.descriptionBasseres, D.S., Tizzei, E.V., Duarte, A.A., Costa, F.F., Saad, S.T., ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein (2002) Biochem. Biophys. Res. Commun., 294, pp. 579-585
dc.descriptionBrown, J.H., Del Re, D.P., Sussman, M.A., The Rac and Rho hall of fame: a decade of hypertrophic signaling hits (2006) Circ. Res., 98, pp. 730-742
dc.descriptionNagai, T., Tanaka-Ishikawa, M., Aikawa, R., Ishihara, H., Zhu, W., Yazaki, Y., Nagai, R., Komuro, I., Cdc42 plays a critical role in assembly of sarcomere units in series of cardiac myocytes (2003) Biochem. Biophys. Res. Commun., 305, pp. 806-810
dc.descriptionDubois, T., Paleotti, O., Mironov, A.A., Fraisier, V., Stradal, T.E., De Matteis, M.A., Franco, M., Chavrier, P., Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics (2005) Nat. Cell Biol., 7, pp. 353-364
dc.descriptionSousa, S., Cabanes, D., Archambaud, C., Colland, F., Lemichez, E., Popoff, M., Boisson-Dupuis, S., Cossart, P., ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion (2005) Nat. Cell Biol., 7, pp. 954-960
dc.descriptionTarone, G., Lembo, G., Molecular interplay between mechanical and humoral signalling in cardiac hypertrophy (2003) Trends Mol. Med., 9, pp. 376-382
dc.descriptionYi, X.P., Wang, X., Gerdes, A.M., Li, F., Subcellular redistribution of focal adhesion kinase and its related nonkinase in hypertrophic myocardium (2003) Hypertension, 41, pp. 1317-1323
dc.descriptionFonseca, P.M., Inoue, R.Y., Kobarg, C.B., Crosara-Alberto, D.P., Kobarg, J., Franchini, K.G., Targeting to C-terminal myosin heavy chain may explain mechanotransduction involving focal adhesion kinase in cardiac myocytes (2005) Circ. Res., 96, pp. 73-81
dc.descriptionHeidkamp, M.C., Bayer, A.L., Kalina, J.A., Eble, D.M., Samarel, A.M., GFP-FRNK disrupts focal adhesions and induces anoikis in neonatal rat ventricular myocytes (2002) Circ. Res., 90, pp. 1282-1289
dc.descriptionWu, S.C., Solaro, R.J., Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins (2007) J. Biol. Chem., 282, pp. 30691-30698
dc.descriptionBerra, E., Diaz-Meco, M.T., Lozano, J., Frutos, S., Municio, M.M., Sanchez, P., Sanz, L., Moscat, J., Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta (1995) EMBO J., 14, pp. 6157-6163
dc.descriptionLeitges, M., Sanz, L., Martin, P., Duran, A., Braun, U., Garcia, J.F., Camacho, F., Moscat, J., Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway (2001) Mol. Cell, 8, pp. 771-780
dc.descriptionFranchini, K.G., Torsoni, A.S., Soares, P.H., Saad, M.J., Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart (2000) Circ. Res., 87, pp. 558-565
dc.descriptionNadruz Jr., W., Kobarg, C.B., Kobarg, J., Franchini, K.G., c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart (2004) Am. J. Physiol. Heart Circ. Physiol., 286, pp. H760-H767
dc.descriptionBalendran, A., Biondi, R.M., Cheung, P.C., Casamayor, A., Deak, M., Alessi, D.R., A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1 (2000) J. Biol. Chem., 275, pp. 20806-20813
dc.descriptionTorsoni, A.S., Fonseca, P.M., Crosara-Alberto, D.P., Franchini, K.G., Early activation of p160ROCK by pressure overload in rat heart (2003) Am. J. Physiol. Cell Physiol., 284, pp. C1411-C1419
dc.descriptionCooper, L.A., Shen, T.L., Guan, J.L., Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction (2003) Mol. Cell. Biol., 23, pp. 8030-8041
dc.descriptionSchaller, M.D., Otey, C.A., Hildebrand, J.D., Parsons, J.T., Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains (1995) J. Cell Biol., 130, pp. 1181-1187
dc.descriptionDunty, J.M., Gabarra-Niecko, V., King, M.L., Ceccarelli, D.F., Eck, M.J., Schaller, M.D., FERM domain interaction promotes FAK signaling (2004) Mol. Cell. Biol., 24, pp. 5353-5368
dc.descriptionBoluyt, M.O., Bing, O.H., Matrix gene expression and decompensated heart failure: the aged SHR model (2000) Cardiovasc. Res., 46, pp. 239-249
dc.descriptionChou, M.M., Hou, W., Johnson, J., Graham, L.K., Lee, M.H., Chen, C.S., Newton, A.C., Toker, A., Regulation of protein kinase C zeta by PI 3-kinase and PDK-1 (1998) Curr. Biol., 8, pp. 1069-1077
dc.descriptionGu, X., Bishop, S.P., Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat (1994) Circ. Res., 75, pp. 926-931
dc.descriptionBraun, M.U., LaRosee, P., Schon, S., Borst, M.M., Strasser, R.H., Differential regulation of cardiac protein kinase C isozyme expression after aortic banding in rat (2002) Cardiovasc. Res., 56, pp. 52-63
dc.descriptionSentex, E., Wang, X., Liu, X., Lukas, A., Dhalla, N.S., Expression of protein kinase C isoforms in cardiac hypertrophy and heart failure due to volume overload (2006) Can. J. Physiol. Pharmacol., 84, pp. 227-238
dc.descriptionBrancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., Tarone, G., Integrin signalling: the tug-of-war in heart hypertrophy (2006) Cardiovasc. Res., 70, pp. 422-433
dc.descriptionHirai, T., Chida, K., Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions (2003) J. Biochem. (Tokyo), 133, pp. 1-7
dc.descriptionLevine, B., Kalman, J., Mayer, L., Fillit, H.M., Packer, M., Elevated circulating levels of tumor necrosis factor in severe chronic heart failure (1990) N. Engl. J. Med., 323, pp. 236-241
dc.descriptionMeldrum, D.R., Tumor necrosis factor in the heart (1998) Am. J. Physiol., 274, pp. R577-R595
dc.descriptionDefer, N., Azroyan, A., Pecker, F., Pavoine, C., TNFR1 and TNFR2 signaling interplay in cardiac myocytes (2007) J. Biol. Chem., 282, pp. 35564-35573
dc.descriptionSopontammarak, S., Aliharoob, A., Ocampo, C., Arcilla, R.A., Gupta, M.P., Gupta, M., Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy (2005) Cell Biochem. Biophys., 43, pp. 61-76
dc.descriptionHa, T., Li, Y., Gao, X., McMullen, J.R., Shioi, T., Izumo, S., Kelley, J.L., Li, C., Attenuation of cardiac hypertrophy by inhibiting both mTOR and NFkappaB activation in vivo (2005) Free Radic. Biol. Med., 39, pp. 1570-1580
dc.descriptionCox, B.D., Natarajan, M., Stettner, M.R., Gladson, C.L., New concepts regarding focal adhesion kinase promotion of cell migration and proliferation (2006) J. Cell. Biochem., 99, pp. 35-52
dc.descriptionSchlaepfer, D.D., Mitra, S.K., Ilic, D., Control of motile and invasive cell phenotypes by focal adhesion kinase (2004) Biochim. Biophys. Acta, 1692, pp. 77-102
dc.descriptionCalalb, M.B., Polte, T.R., Hanks, S.K., Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases (1995) Mol. Cell. Biol., 15, pp. 954-963
dc.descriptionQuach, N.L., Rando, T.A., Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells (2006) Dev. Biol., 293, pp. 38-52
dc.descriptionMitra, S.K., Hanson, D.A., Schlaepfer, D.D., Focal adhesion kinase: in command and control of cell motility (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 56-68
dc.descriptionHsia, D.A., Mitra, S.K., Hauck, C.R., Streblow, D.N., Nelson, J.A., Ilic, D., Huang, S., Schlaepfer, D.D., Differential regulation of cell motility and invasion by FAK (2003) J. Cell Biol., 160, pp. 753-767
dc.descriptionMoissoglu, K., Gelman, I.H., v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts (2003) J. Biol. Chem., 278, pp. 47946-47959
dc.descriptionYi, X.P., Zhou, J., Huber, L., Qu, J., Wang, X., Gerdes, A.M., Li, F., Nuclear compartmentalization of FAK and FRNK in cardiac myocytes (2006) Am. J. Physiol. Heart Circ. Physiol., 290, pp. H2509-H2515
dc.descriptionXia, H., Nho, R.S., Kahm, J., Kleidon, J., Henke, C.A., Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway (2004) J. Biol. Chem., 279, pp. 33024-33034
dc.descriptionWu, J.C., Tsai, R.Y., Chung, T.H., Role of catenins in the development of gap junctions in rat cardiomyocytes (2003) J. Cell. Biochem., 88, pp. 823-835
dc.descriptionSheikh, F., Chen, Y., Liang, X., Hirschy, A., Stenbit, A.E., Gu, Y., Dalton, N.D., Chen, J., alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture (2006) Circulation, 114, pp. 1046-1055
dc.languageen
dc.publisher
dc.relationBiochemical and Biophysical Research Communications
dc.rightsfechado
dc.sourceScopus
dc.titleArhgap21 Associates With Fak And Pkcζ And Is Redistributed After Cardiac Pressure Overload
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución