Artículos de revistas
Chapter 1 Semilinear Elliptic Systems: Existence, Multiplicity, Symmetry Of Solutions
Registro en:
9780444532176
Handbook Of Differential Equations: Stationary Partial Differential Equations. , v. 5, n. , p. 1 - 48, 2008.
18745733
10.1016/S1874-5733(08)80008-3
2-s2.0-67649649954
Autor
de Figueiredo D.G.
Institución
Resumen
[No abstract available] 5
1 48 Alves, C.O., de Morais Filho, D.C., Souto, M.A.S., On systems of elliptic equations involving subcritical and critical Sobolev exponents (2000) Nonlinear Anal., 42, pp. 771-787 Amann, H., Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces (1976) SIAM Rev., 18, pp. 630-709 Ambrosetti, A., Rabinowitz, P.H., Dual variational methods in critical point theory and applications (1973) J. Funct. Anal., 14, pp. 349-381 Arcoya, D., Ruiz, D., The Ambrosetti-Prodi problem for the p-Laplacian (2006) Comm. Partial Differential Equations, 31, pp. 841-865 Avila, A., Yang, J., On the eeistence and shape of least energy solutions for some elliptic system (2003) J. Differential Equations, 191, pp. 348-376 Azizieh, C., Clément, Ph., Existence and a priori estimates for positive solutions of p-Laplace systems (2002) J. Differential Equations, 184, pp. 422-442 Bandle, C., Essen, M., On positive solutions of Emden equations in cones (1990) Arch. Ration. Mech. Anal., 112, pp. 319-338 Bartsch, T., Clapp, M., Critical point theory for indefinite functionals with symmetries (1996) J. Funct. Anal., 138, pp. 107-136 Bartsch, T., de Figueiredo, D.G., Infinitely many solutions of nonlinear elliptic systems (1999) Progr. Nonlinear Differential Equations Appl., vol. 35 (The Herbert Amann Anniversary Volume), pp. 51-68 Bartsch, T., de Figueiredo, D.G., Infinitely many solutions of nonlinear elliptic systems (1996) Progr. Nonlinear Differential Equations Appl., vol. 35 (The Herbert Amann Anniversary Volume), pp. 107-136 Bartsch, T., Willem, M., Infinitely many nonradial solutions of a Euclidean scalar field equation (1993) J. Funct. Anal., 117, pp. 447-460 Benci, V., Rabinowitz, P.H., Critical point theorems for indefinite functionals (1979) Invent. Math., pp. 241-273 Benjamin, T.B., A unified theory of conjugate flows (1971) Phil. Trans. Royal Soc. A, 269, pp. 587-643 Berestycki, H., Capuzzo-Dolcetta, I., Nirenberg, L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems (1995) Topol. Methods Nonlinear Anal., 4, pp. 59-78 Berestycki, H., Nirenberg, L., On the method of moving planes and the sliding method (1991) Bull. Soc. Bras. Mat., 22, pp. 1-22 Bidault-Veron, M.F., Grillot, P., Singularities in elliptic systems with absorption terms (1999) Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (4), pp. 229-271 Birindelli, I., Mitidieri, E., Liouville theorems for elliptic inequalities and applications (1998) Proc. Roy. Soc. Edinburgh Sect. A, 128, pp. 1217-1247 Boccardo, L., de Figueiredo, D.G., Some remarks on a system of quasilinear elliptic equations (2002) NoDEA Nonlinear Differential Equations Appl., 9, pp. 309-323 Busca, J., Manásevich, R., A Liouville type theorem for Lane-Emden systems (2002) Indiana Univ. Math. J., 51, pp. 37-51 Busca, J., Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space (2000) J. Differential Equations, 163, pp. 41-56 Busca, J., Sirakov, B., Harnack type estimates for nonlinear elliptic systems and applications (2004) Ann. Inst. H. Poincaré, 21, pp. 543-590 Brezis, H., Turner, R.E.L., On a class of superlinear elliptic problems (1977) Comm. Partial Differential Equations, 2, pp. 601-614 Chabrowski, J., Yang, I., On the Neumann problem for en elleptic, system of equations involving critical Sobolev exponents (2001) Coll. Math., 90, pp. 19-35 Cerami, G., Un criterio de esistenza per i punti critici su varietà ilimitate (1978) Istit., Lombardo Sci. Lett., 112, pp. 332-336 Chang, K.C., Ambrosetti-Prodi type results in elliptic systems (2002) Nonlinear Anal., 51, pp. 553-566 Chen, W., Li, C., Classification of solutions of some nonlinear elliptic equations (1991) Duke Math. J., 63, pp. 615-622 Clément, Ph., de Figueiredo, D.G., Mitidieri, E., Positive solutions of semilinear elliptic systems (1992) Comm. Partial Differential Equations, 17, pp. 923-940 Clément, Ph., de Figueiredo, D.G., Mitidieri, E., A priori estimates for positive solutions of semilinear elliptic systems via Hardy-Sobolev inequalities (1996) Pitman Res. Notes Math., pp. 73-91 Clément, Ph., Manásevich, R., Mitidieri, E., Positive solutions for a quasilinear system via blow up (1993) Comm. Partial Differential Equations, 18, pp. 2071-2106 Costa, D.G., Magalhães, C.A., A unified approach to a class of strongly indefinite functionals (1996) J. Differential Equations, 122, pp. 521-547 Dancer, E.N., Some notes on the method of moving planes (1992) Bull. Austral. Math. Soc., 46, pp. 425-434 de Figueiredo, D.G., Positive solutions of semilinear elliptic equations (1982) Lecture Notes in Math., vol. 957, pp. 34-87. , Springer-Verlag de Figueiredo, D.G., The Ekeland Variational Principle with Applications and Detours (1989) Tata Lecture Notes on Mathematics and Physics, , Springer-Verlag de Figueiredo, D.G., Monotonicity and symmetry of solutions of elliptic systems in general domains (1994) NoDEA Nonlinear Differential Equations Appl., 1, pp. 119-123 de Figueiredo, D.G., Ding, Y.H., Strongly indefinite functionals and multiple solutions of elliptic systems (2003) Trans. Amer. Math. Soc., 355, pp. 2973-2989 de Figueiredo, D.G., Felmer, P.L., On superquadratic elliptic systems (1994) Trans. Amer. Math. Soc., 343, pp. 119-123 de Figueiredo, D.G., Magalhães, C.A., On nonquadratic Hamiltonian elliptic systems (1996) Adv. Diff. Eq., 1, pp. 881-898 de Figueiredo, D.G., Mitidieri, E., Maximum principles for linear elliptic systems (1990) Rend. Ist. Mat. Univ. Trieste, XXII, pp. 37-66 de Figueiredo, D.G., Ramos, M., On linear perturbations of superquadratic elliptic systems, reaction-diffusion systems (1998) Lect. Notes Pure Appl. Math., 194, pp. 121-130 de Figueiredo, D.G., Lions, P.-L., Nussbaum, R., A priori estimates and existence of positive solutions of semilinear elliptic of positive solutions of semilinear elliptic equations (1982) J. Math. Pures Appl., 61, pp. 41-63 de Figueiredo, D.G., Felmer, P.L., A Liouville-type theorem for systems (1994) Ann. Scuola Norm. Sup. Pisa, XXI, pp. 387-397 de Figueiredo, D.G., (1998) Semilinear elliptic systems, pp. 122-152. , Nonlinear Funct. Anal. Appl. Diff. Eq., World Sci. Publishing, River Edge de Figueiredo, D.G., Sirakov, B., Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems (2005) Math. Ann., 333, pp. 231-260 de Figueiredo, D.G., Yang, J., Decay, symmetry and existence of positive solutions of semilinear elliptic systems (1988) Nonlinear Anal., 33, pp. 211-234 de Figueiredo, D.G., Ruf, B., Elliptic systems with nonlinearities of arbitrary growth (2004) Med. J. Math., 1, pp. 417-431 de Figueiredo, D.G., Yang, J., A priori bounds for positive solutions of a non-variational elliptic system (2001) Comm. Partial Differential Equations, 26, pp. 2305-2321 de Figueiredo, D.G., do Ó, J.M., Ruf, B., Critical and subcritical elliptic systems in dimension two (2004) Indiana Univ. Math. J., 53, pp. 1037-1054 de Figueiredo, D.G., Sirakov, B., Ambrosetti-Prodi problem for non-variational elliptic systems, , On the in press Deimling, K., (1985) Nonlinear Functional Analysis, , Springer-Verlag de Thélin, F., Premiére valeur propre dun système elliptique non linéaire (1990) C. R. Acad. Sci. Paris, 311, pp. 603-606 DiBenedetto, E., C1+α local regularity of weak solutions of degenerate elliptic equations (1983) Nonlinear Anal, 7, pp. 827-850 Dickstein, F., Positive solutions of an elliptic system depending on two parameters (2005) Diff. Int. Eq., 18, pp. 287-297 Ding, Y.H., Infinitely many entire solutions of elliptic systems with symmetry (1997) Topol. Methods Nonlinear Anal., 9, pp. 313-323 do Ó, J.M., Ubilla, P., A multiplicity result for a class of superquadratic Hamiltonian systems (2003) Electronic J. Differential Equations, 2003 (15), pp. 1-14 Felmer, P.L., Periodic solutions of "superquadratic" Hamiltonian systems (1992) J. Differential Equations, 17, pp. 923-940 Felmer, P.L., Nonexistence and symmetry theorems for elliptic systems in RN (1994) Rend. Circ. Mat. Palermo, XLIII, pp. 259-284 Felmer, P.L., Martinez, S., Existence and uniqueness of positive solutions to certain differential systems (1998) Adv. Diff. Eq., 4, pp. 575-593 Felmer, P.L., Wang, Z.Q., Multiplicity for symmetric indefinite functionals: Application to Hamiltonian and elliptic systems (1998) Topol. Methods Nonlinear Anal., 12 (2), pp. 207-226 Fleckinger, J., Takac, P., Uniqueness of positive solutions for nonlinear cooperative systems with p-Laplacian (1994) Indiana Univ. Math. J., 43, pp. 1227-1253 Fernandez B., J., Pinasco, J.P., Rossi, J.D., Existence results for Hamiltonian elliptic systems with non-linear boundary conditions (1999) Electronic J. Differential Equations, 1999 (40), pp. 1-15 Figueiredo, G.M., Multiplicity of solutions for a class of elliptic systems in RN (2006) Electronic J. Differential Equations, 2006 (76), p. 12 Garcia-Huidobro, M., Manásevich, R., Mitidieri, E., Yarur, C.S., Existence and nonexistence of positive singular solutions for a class of semilinear elliptic systems (1997) Arch. Ration. Mech. Anal., pp. 253-284 Gidas, B., Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations (1980) Lect. Notes Pure Appl. Math., 54, pp. 255-273. , Proc. Conf. Kingston, 1979. Sternberg R., Kalinowski A., and Papadakis J. (Eds) Gidas, B., Ni, W.M., Nirenberg, L., Symmetry and related properties via maximum principles (1979) Comm. Math. Phys., 68, pp. 209-243 Gidas, B., Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations (1981) Comm. Partial Differential Equations, 6, pp. 883-901 Gidas, B., Spruck, J., Global and local behaviour of positive solutions of nonlinear elliptic equations (1981) Comm. Pure Appl. Math., 34, pp. 525-598 Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order. 2nd edition, , Springer-Verlag Hai, D.D., Shivaji, R., An existence result on positive solutions for a class of p-Laplacian systems (2004) Nonlinear Anal., 56, pp. 1007-1010 Han, P., Strongly indefinite systems with critical Sobolev exponents and weights (2004) Appl. Math. Letters, 17, pp. 909-917 Hulshof, J., van der Vorst, R.C.A.M., Differential systems with strongly indefinite variational structure (1993) J. Funct. Anal., 114, pp. 32-58 Hulshof, J., Mitidieri, E., van der Vorst, R.C.A.M., Strongly indefinite systems with critical Sobolev exponents (1998) Trans. Amer. Math. Soc., 350, pp. 2349-2365 Kalita, E.A., Singular solutions of higher-order non-linear elliptic systems (2004) Sbornik Math., 195, pp. 1607-1638 Krasnoselskii, M.A., (1964) Positive Solutions of Operator Equations, , P. Noordhoff, Groningen Laptev, G.G., Absence of global positive solutions of systems of semilinear elliptic inequalities in cones (2000) Izv. Math., 64, pp. 1197-1215 Liu, J.Q., Li, S., Some existence theorems on multiple critical points and their applications (1984) Kexue Tongbao, 17 Li, S., Willem, M., Application of local linking to critical point theory (1995) J. Math. Anal. Appl., 189, pp. 6-32 de Morais Filho, D.C., A variational approach to an Ambrosetti-Prodi type problem for a system of elliptic equations (1996) Nonlinear Anal., 26, pp. 1655-1668 Mitidieri, E., A Rellich type identity and applications (1993) Comm. Partial Differential Equations, 18, pp. 125-151 Mitidieri, E., Nonexistence of positive solutions of semilinear elliptic systems in RN (1996) Diff. Int. Eq., 9, pp. 465-479 Montenegro, M.S., Criticalidade, superlinearidade e sublinearidade para sistemas elíptico semilineares (1997) Tese de Doutoramento, Unicamp Montenegro, M.S., Existence of solutions for some semilinear elliptic systems with singular coefficients (2001) Nonlinear Anal. Real World Appl., 2, pp. 401-415 de Morais Filho, D.C., Souto, M.A.S., Systems of p-Laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees (1999) Comm. Partial Differential Equations, 24 (7-8), pp. 1537-1553 Quittner, P., Souplet, Ph., A priori estimates and existence for elliptic systems via, bootstrap in weighted Sobolev spaces (2004) Arch. Ration. Mech. Anal., 174, pp. 49-81 Pohozaev, S.I., The Sobolev embedding in the case pl=n (1965) Proceedings of the Technical Scientific Conference on Advances of Scientific Research, Mathematics Section, pp. 158-170. , 1964-1965, Moscow, Energet. Inst., Moscow Peletier, L.A., van der Vorst, R.C.A.M., Existence and non-existence of positive solutions of non-linear elliptic systems and the biharmonic equation (1992) Diff. Int. Eq., 5, pp. 747-767 Protter, M.H., Weinberger, H.F., (1967) Maximum Principles in Differential Equations, , Prentice-Hall, Englewood Cliffs, NJ Pucci, P., Serrin, J., A general variational identity (1986) Indiana Univ. Math. J., 35, pp. 681-703 Rabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986) CBMS Reg. Conf. Ser. Math., 65. , AMS, Providence, RI Serrin, J., Zou, H., Non-existence of positive solutions of Lane-Emden system (1996) Diff. Int. Eq., 9, pp. 635-653 Serrin, J., Zou, H., The existence of positive entire solutions of elliptic Hamiltonian systems (1998) Comm. Partial Differential Equations, 23, pp. 577-599 Silva, E.A.B., Linking theorems and applications to nonlinear elliptic problems at resonance (1991) Nonlinear Anal., pp. 455-477 Sirakov, B., On the existence of solutions of Hamiltonian systems in RN (2000) Adv. Diff. Eq., 5 (10-12), pp. 1445-1464 Souto, M.A.S., A priori estimates and existence of positive solutions of nonlinear cooperative elliptic systems (1995) Diff. Int. Eq., 8, pp. 1245-1258 Tanaka, K., Multiple positive solutions for some nonlinear elliptic systems (1997) Topol. Methods Nonlinear Anal., 10, pp. 15-45 Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 Troy, W.C., Symmetry properties in systems of semilinear elliptic equations (1981) J. Differential Equations, 42, pp. 400-413 Trudinger, N.S., On imbeddings into Orlicz spaces and some applications (1967) J. Math. Mech., 17, pp. 473-484 van der Vorst, R., Variational identities and applications to differential systems (1991) Arch. Ration. Mech. Anal., 116, pp. 375-398 Vásquez, J.L., A strong maximum principle for some quasilinear elliptic, equations (1984) Appl. Math. Optim., 12, pp. 191-202 Yarur, C., Nonexistence of positive singular solutions for a class of semilinear elliptic systems (1996) Electronic J. Differential Equations, 1996 (8), pp. 1-22 Zou, H., A priori estimates for a semilinear elliptic system without variational structure and their applications (2002) Math. Ann., 323, pp. 713-735