dc.creatorde Almeida Celso
dc.creatorPalazzo Jr. R.
dc.date1990
dc.date2015-06-30T14:02:04Z
dc.date2015-11-26T14:40:51Z
dc.date2015-06-30T14:02:04Z
dc.date2015-11-26T14:40:51Z
dc.date.accessioned2018-03-28T21:47:24Z
dc.date.available2018-03-28T21:47:24Z
dc.identifier
dc.identifier. Publ By Ieee, Piscataway, Nj, United States, v. , n. , p. 67 - 68, 1990.
dc.identifier
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0025597532&partnerID=40&md5=b0f9c9e37fa42d17a2d00bce38a01bd6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/99041
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/99041
dc.identifier2-s2.0-0025597532
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250592
dc.descriptionSummary form only given, as follows. New trellis codes over GF(q) are presented for one- and two-dimensional Euclidean spaces. A closed-form expression is derived for the squared free Euclidean distance and for the asymptotic coding gain for the combined form of M-PAM with convolutional codes with one and two memory elements. The corresponding generator matrices for a class of these codes are also presented. Curves showing the asymptotic behavior are provided. By use of the solutions of the diophantine equation (set partitioning) and the generalized minterm technique associated with the concept of Latin square, new trellis codes are tabulated for the combined form of QAM and convolutional codes with one memory element.
dc.description
dc.description
dc.description67
dc.description68
dc.languageen
dc.publisherPubl by IEEE, Piscataway, NJ, United States
dc.relation
dc.rightsfechado
dc.sourceScopus
dc.titleNew Trellis Codes Over Gf(q) For One And Two Dimensional Lattices
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución