Artículos de revistas
Rapidly Switching Multidirectional Defibrillation: Reversal Of Ventricular Fibrillation With Lower Energy Shocks
Registro en:
Journal Of Thoracic And Cardiovascular Surgery. Mosby Inc., v. 148, n. 6, p. 3213 - 3218, 2014.
225223
10.1016/j.jtcvs.2014.07.035
2-s2.0-84920036980
Autor
Viana M.A.
Bassani R.A.
Petrucci O.
Marques D.A.
Bassani J.W.M.
Institución
Resumen
Objectives Cardiac arrest after open surgery has an incidence of approximately 3%, of which more than 50% of the cases are due to ventricular fibrillation. Electrical defibrillation is the most effective therapy for terminating cardiac arrhythmias associated with unstable hemodynamics. The excitation threshold of myocardial microstructures is lower when external electrical fields are applied in the longitudinal direction with respect to the major axis of cells. However, in the heart, cell bundles are disposed in several directions. Improved myocardial excitation and defibrillation have been achieved by applying shocks in multiple directions via intracardiac leads, but the results are controversial when the electrodes are not located within the cardiac chambers. This study was designed to test whether rapidly switching shock delivery in 3 directions could increase the efficiency of direct defibrillation.© 2014 The American Association for Thoracic Surgery Methods A multidirectional defibrillator and paddles bearing 3 electrodes each were developed and used in vivo for the reversal of electrically induced ventricular fibrillation in an anesthetized open-chest swine model. Direct defibrillation was performed by unidirectional and multidirectional shocks applied in an alternating fashion. Survival analysis was used to estimate the relationship between the probability of defibrillation and the shock energy.Results Compared with shock delivery in a single direction in the same animal population, the shock energy required for multidirectional defibrillation was 20% to 30% lower (P <.05) within a wide range of success probabilities.Conclusions Rapidly switching multidirectional shock delivery required lower shock energy for ventricular fibrillation termination and may be a safer alternative for restoring cardiac sinus rhythm. 148 6 3213 3218 Dunning, J., Fabbri, A., Kolh, P.H., Levine, A., Lockowandt, U., Mackay, J., Guideline for resuscitation in cardiac arrest after cardiac surgery (2009) Eur J Cardiothorac Surg, 36, pp. 3-28 Vanden Hoek, T.L., Morrison, L.J., Shuster, M., Donnino, M., Sinz, E., Lavonas, E.J., Part 12: Cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (2010) Circulation, 122, pp. 829-S861 Walker, R.G., Koster, R.W., Sun, C., Moffat, G., Barger, J., Dodson, P.P., Defibrillation probability and impedance change between shocks during resuscitation from out-of-hospital cardiac arrest (2009) Resuscitation, 80, pp. 773-777 Zipes, D.P., Fischer, J., King, R.M., Nicoll, A., Jolly, W.W., Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium (1975) Am J Cardiol, 36, pp. 37-44 Chapman, P.D., Sagar, K.B., Wetherbee, J.N., Troup, P.J., Relationship of left ventricular mass to defibrillation threshold for the implantable defibrillator: A combined clinical and animal study (1987) Am Heart J, 114, pp. 274-278 Yabe, S., Smith, W.M., Daubert, J.P., Wolf, P.D., Rollins, D.L., Ideker, R.E., Conduction disturbances caused by high current density electric fields (1990) Circ Res, 66, pp. 1190-1203 Fedorov, V.V., Nikolski, V.P., Efimov, I.R., Effect of electroporation on cardiac electrophysiology (2008) Methods Mol Biol, 423, pp. 433-448 Hendrikx, M., Jiang, H., Gutermann, H., Toelsie, J., Renard, D., Briers, A., Release of cardiac troponin i in antegrade crystalloid versus cold blood cardioplegia (1999) J Thorac Cardiovasc Surg, 118, pp. 452-459 De Oliveira, P.X., Bassani, R.A., Bassani, J.W., Lethal effect of electric fields on isolated ventricular myocytes (2008) IEEE Trans Biomed Eng, 55, pp. 2635-2642 Tsai, M.S., Tang, W., Sun, S., Wang, H., Freeman, G., Chen, W.J., Individual effect of components of defibrillation waveform on the contractile function and intracellular calcium dynamics of cardiomyocytes (2009) Crit Care Med, 37, pp. 2394-2401 Tung, L., Sliz, N., Mulligan, M.R., Influence of electrical axis of stimulation on excitation of cardiac muscle cells (1991) Circ Res, 69, pp. 722-730 Knisley, S.B., Baynham, T.C., Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts (1997) Circ Res, 81, pp. 229-241 Bassani, R.A., Lima, K.A., Gomes, P.A., Oliveira, P.X., Bassani, J.W., Combining stimulus direction and waveform for optimization of threshold stimulation of isolated ventricular myocytes (2006) Physiol Meas, 27, pp. 851-863 Fonseca, A.V., Bassani, R.A., Oliveira, P.X., Bassani, J.W., Greater cardiac cell excitation efficiency with rapidly switching multidirectional electrical stimulation (2013) IEEE Trans Biomed Eng, 60, pp. 28-34 Bourland, J.D., Tacker, Jr.W.A., Wessale, J.L., Kallok, M.J., Graf, J.E., Geddes, L.A., Sequential pulse defibrillation for implantable defibrillators (1986) Med Instrum, 20, pp. 138-142 Chang, M.S., Inoue, H., Kallok, M.J., Zipes, D.P., Double and triple sequential shocks reduce ventricular defibrillation threshold in dogs with and without myocardial infarction (1986) J Am Coll Cardiol, 8, pp. 1393-1405 Jones, D.L., Klein, G.J., Guiraudon, G.M., Sharma, A.D., Kallok, M.J., Bourland, J.D., Internal cardiac defibrillation in man: Pronounced improvement with sequential pulse delivery to two different lead orientations (1986) Circulation, 73, pp. 484-491 Exner, D., Yee, R., Jones, D.L., Klein, G.J., Mehra, R., Combination biphasic waveform plus sequential pulse defibrillation improves defibrillation efficacy of a nonthoracotomy lead system (1994) J Am Coll Cardiol, 23, pp. 317-322 Kerber, R.E., Spencer, K.T., Kallok, M.J., Birkett, C., Smith, R., Yoerger, D., Overlapping sequential pulses. A new waveform for transthoracic defibrillation (1994) Circulation, 89, pp. 2369-2379 Pagan-Carlo, L.A., Allan, J.J., Spencer, K.T., Birkett, C.L., Myers, R., Kerber, R.E., Encircling overlapping multipulse shock waveforms for transthoracic defibrillation (1998) J Am Coll Cardiol, 32, pp. 2065-2071 Kerber, R.E., Bourland, J.D., Kallok, M.J., Hite, P., Pritchard, B., Charbonnier, F., Transthoracic defibrillation using sequential and simultaneous dual shock pathways: Experimental studies (1990) Pacing Clin Electrophysiol, 13, pp. 207-217 Roscher, R., Arlock, P., Sjoberg, T., Steen, S., Effects of dopamine on porcine myocardial action potentials and contractions at 37 degrees C and 32 degrees C (2001) Acta Anaesthesiol Scand, 45, pp. 421-426 Petrucci Junior, O., Oliveira, P.P., Carmo, M.R., Vieira, R.W., Braile, D.M., Standardization of an isolated pig heart preparation with parabiotic circulation: Methodological considerations (2003) Braz J Med Biol Res, 36, pp. 649-659 Euler, D.E., Whitman, T.A., Roberts, P.R., Kallok, M.J., Low voltage direct current delivered through unipolar transvenous leads: An alternate method for the induction of ventricular fibrillation (1999) Pacing Clin Electrophysiol, 22, pp. 908-914 Suzuki, Y., Yeung, A.C., Ikeno, F., The representative porcine model for human cardiovascular disease (2011) J Biomed Biotechnol, 2011, p. 195483 Neunlist, M., Tung, L., Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: Dependence on fiber orientation (1995) Biophys J, 68, pp. 2310-2322 Gilbert, S.H., Benoist, D., Benson, A.P., White, E., Tanner, S.F., Holden, A.V., Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI (2012) Am J Physiol Heart Circ Physiol, 302, pp. 287-H298 Efimov, I., Ripplinger, C.M., Virtual electrode hypothesis of defibrillation (2006) Heart Rhythm, 3, pp. 1100-1102 Koster, R.W., Baubin, M.A., Bossaert, L.L., Caballero, A., Cassan, P., Castren, M., European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators (2010) Resuscitation, 81, pp. 1277-1292 Shelton, R.J., Brown, B.D., Allinson, A., Johnson, T., Smales, C., Jolly, S., A comparison between monophasic and biphasic defibrillation for the cardioversion of persistent atrial fibrillation in patients with and without heart failure (2011) Int J Cardiol, 147, pp. 405-408 Tanabe, S., Yasunaga, H., Ogawa, T., Koike, S., Akahane, M., Horiguchi, H., Comparison of outcomes after use of biphasic or monophasic defibrillators among out-of-hospital cardiac arrest patients: A nationwide population-based observational study (2012) Circ Cardiovasc Qual Outcomes, 5, pp. 689-696