dc.creatorClyne T.W.
dc.creatorGarcia A.
dc.date1981
dc.date2015-06-30T13:44:36Z
dc.date2015-11-26T14:40:07Z
dc.date2015-06-30T13:44:36Z
dc.date2015-11-26T14:40:07Z
dc.date.accessioned2018-03-28T21:46:13Z
dc.date.available2018-03-28T21:46:13Z
dc.identifier
dc.identifierJournal Of Materials Science. Kluwer Academic Publishers, v. 16, n. 6, p. 1643 - 1653, 1981.
dc.identifier222461
dc.identifier10.1007/BF00553978
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0019576708&partnerID=40&md5=d4377f9233e6f860a3063ef943af48c1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/98835
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/98835
dc.identifier2-s2.0-0019576708
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250281
dc.descriptionThis paper outlines how the virtual adjunct method (VAM) of Garcia, Clyne and Prates, describing heat flow in unidirectional solidification, may be applied to splat cooling processes. The model allows finite thermal resistance across the mould-metal interface and leads to explicit solutions which are mathematically exact. Examples are presented showing how the equations may be used to investigate the relationships between melt-substrate properties, operating parameters and local cooling conditions, with particular reference to the treatment of vitrification. A brief outline is given of how closely real systems are likely to conform to the boundary conditions under which the model must be applied. It is concluded that, while numerical treatments may be required if a given system is to be accurately modelled, the VAM equations should prove useful for general examinations of splat cooling characteristics and in assessing the expected effects of changes in design and operational features. © 1981 Chapman and Hall Ltd.
dc.description16
dc.description6
dc.description1643
dc.description1653
dc.languageen
dc.publisherKluwer Academic Publishers
dc.relationJournal of Materials Science
dc.rightsfechado
dc.sourceScopus
dc.titleThe Application Of A New Solidification Heat Flow Model To Splat Cooling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución