dc.creatorCoelho M.B.
dc.creatorMarangoni S.
dc.creatorMacedo M.L.R.
dc.date2007
dc.date2015-06-30T18:51:39Z
dc.date2015-11-26T14:38:50Z
dc.date2015-06-30T18:51:39Z
dc.date2015-11-26T14:38:50Z
dc.date.accessioned2018-03-28T21:44:10Z
dc.date.available2018-03-28T21:44:10Z
dc.identifier
dc.identifierComparative Biochemistry And Physiology - C Toxicology And Pharmacology. , v. 146, n. 3, p. 406 - 414, 2007.
dc.identifier15320456
dc.identifier10.1016/j.cbpc.2007.05.001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34547162870&partnerID=40&md5=f4beae9dd17279cb7d74215ffe5bc1d2
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105114
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105114
dc.identifier2-s2.0-34547162870
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249757
dc.descriptionAnnona coriacea lectin (ACLEC) was tested for insecticidal activity against larvae of two pyralid moths, Anagasta kuehniella and Corcyra cephalonica. ACLEC produced ∼ 50% mortality and mass loss in A. kuehniella larvae when incorporated into an artificial diet at levels of 1.5% and 1.0% (w/w), respectively. In contrast, the inclusion of up to 2% ACLEC in the diet did not significantly decrease the survival or weight of C. cephalonica larvae. The nutritional indices for A. kuehniella and C. cephalonica suggested that ACLEC had a multi-mechanistic mode of action and was an antifeedant for both insects. The toxicity in A. kuehniella apparently resulted from a change in the gut membrane environment and consequent disruption of digestive enzyme recycling mechanisms. Affinity chromatography showed that ACLEC bound to midgut proteins of A. kuehniella and C. cephalonica. However, the 14 kDa subunit of ACLEC was not digested by midgut proteases of A. kuehniella, but was degraded by the corresponding C. cephalonica proteases within a few hours. These findings suggest the possibility of using ACLEC to engineer crop plants. © 2007 Elsevier Inc. All rights reserved.
dc.description146
dc.description3
dc.description406
dc.description414
dc.descriptionBandyopadhyay, S., Roy, A., Das, S., Binding of garlic (Allium sativum) leaf lectin to the gut receptors of a homopteran pest is correlated to its insecticidal activity (2001) Plant Sci., 161, pp. 1025-1033
dc.descriptionBradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254
dc.descriptionBrunelle, F., Cloutier, C., Michaud, M., Colorado potato beetles compensate for tomato cathepsin D inhibitor expressed in transgenic potato (2004) Arch. Insect Biochem. Physiol., 55, pp. 103-113
dc.descriptionCarlini, C.R., Grossi-de-Sá, M.F., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides (2002) Toxicon, 40, pp. 1515-1539
dc.descriptionChristeller, J.T., Malone, L.A., Todd, J., Marshall, R.M., Burgess, E.P.J., Philip, B.A., Distribution and residual activity of two insecticidal proteins, avidin and aprotinin, expressed in transgenic tobacco plants, in the bodies and frass of Spodoptera litura larvae following feeding (2005) J. Insect Physiol., 51, pp. 1117-1126
dc.descriptionCoelho, M.B., Freire, M.G.M., Toyama, M.H., Marangoni, S., Novello, J.C., Macedo, M.L.R., Purification and characterization of a lectin from Annona coriacea seeds (2003) Prot. Peptide Letters, 10 (2), pp. 165-173
dc.descriptionDown, R.E., Ford, L., Woodhouse, S.D., Raemaekers, R.J.M., Leitch, B., Gatehouse, J.A., Gatehouse, A.M.R., Snowdrop lectin (GNA) has not acute toxic effects on a beneficial insect predator, the 2-spot ladybird (Adalia bipunctata L.) (2000) J. Insect Physiol., 46, pp. 379-391
dc.descriptionDutta, I., Saha, P., Majumder, P., Sarkar, A., Chakraborti, D., Banerjee, S., Das, S., The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco (2005) Plant Biotech. J., 3, pp. 601-611
dc.descriptionErickson, R.H., Kim, J., Sleisenger, M.H., Kim, Y.S., Effect of lectins on the activity of brusch border membrane-bound enzymes of rat small intestine (1985) J. Pediatr. Gastroenterol. Nutr., 4, pp. 984-991
dc.descriptionErlanger, F., Kokowsky, N., Cohen, W., The preparation and properties of two chromogenic substrates of trypsin (1961) Arch. Biochem. Biophys., 95, pp. 217-278
dc.descriptionFitches, E., Gatehouse, J.A., A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea) (1998) J. Insect Physiol., 44, pp. 1213-1224
dc.descriptionFitches, E., Gatehouse, A.M.R., Gatehouse, J.A., Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of the tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials (1997) J. Insect Physiol., 43, pp. 727-739
dc.descriptionHackman, R.H., Goldberg, M., New substrates for use with chitinases (1964) Anal. Biochem., 8, pp. 397-401
dc.descriptionKim, Y.S., Brophy, E.J., Nicholson, J.A., Rat intestinal brush border membrane peptidases (1976) J. Biol. Chem., 251, pp. 3206-3212
dc.descriptionKoul, O., Isman, M.B., Effects of azadirachtin on dietary utilization and development of variegated cutworm, Peridroma saucia (1991) J. Insect Physiol., 37, pp. 591-598
dc.descriptionLaemmli, U.K., Cleveage of structural protein during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-674
dc.descriptionLaw, I.J., Kfir, R., Effect of mannose-binding lectin from peanut and pea on the stem borer Chilo partellus (1997) Entomol. Exp. Appl., 82, pp. 261-265
dc.descriptionLeite, Y.F.M.M., Silva, L.M.C.M., Amorim, R.C.N., Freire, E.A., Jorge, D.M.M., Granjeiro, T.B., Benevides, N.M.B., Purification of a lectin from the marine red alga Gracilaria ornata and its effect on the development of the cowpea weevil Callosobruchus maculatus (2005) Biochim. Biophys. Acta (BBA) - General Subjects, 1724 (1-2), pp. 137-145
dc.descriptionLima, J.E., Sampaio, A.L.F., Henriques, M.G.M.O., Barja-Fidalgo, C., Lymphocyte activation and cytokine production by Pisum sativum agglutinin (PSA) in vivo and in vitro (1999) Immunopharmacology, 41, pp. 147-155
dc.descriptionMacedo, M.L.R., Fernandes, K.V.S., Sales, M.P., Xavier-Filho, J., Vicilins variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus) (1993) Comp. Biochem. Physiol. C, 105, pp. 89-94
dc.descriptionMacedo, M.L.R., Coelho, M.B., Freire, M.G.M., Machado, O.L.T., Marangoni, S., Novello, J.C., Effect of a toxic protein isolated from Zea mays seeds on the development and survival of the cowpea weevil, Callosobruchus maculatus (2000) Prot. Peptide Letters, 17, pp. 25-31
dc.descriptionMacedo, M.L.R., Freire, M.G.M., Novello, J.C., Marangoni, S., Talisia esculenta lectin and larval development of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) (2002) Biochim. Biophys. Acta, 1571, pp. 83-88
dc.descriptionMacedo, M.L.R., Damico, D.C., Freire, M.G.M., Toyama, M.H., Marangoni, S., Novello, J.C., Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae) (2003) J. Agric. Food Chem., 51, pp. 2980-2986
dc.descriptionMacedo, M.L.R., Freire, M.G.M., Castro, M.M., Mechanisms of the Insecticidal Action of TEL (Talisia esculenta Lectin) Against Callosobruchus maculatus (Coleoptera: Bruchidae) (2004) Arch. Insect Biochem. Physiol., 56, pp. 84-96
dc.descriptionMacedo, M.L.R., Freire, M.G.M., Silva, M.B.R., Coelho, L.C.B.B., Insecticidal action of Bauhinia monadra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculates (Coleoptera: Bruchidae) (2007) Comp. Biochem. Physiol. A, 146, pp. 486-498
dc.descriptionMachuka, J.S., Okeola, O.G., Chrispeels, M.J., Jackai, L.E.N., African yam beans seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of legume pod borer (2000) Phytochemistry, 53, pp. 667-674
dc.descriptionMajumder, P., Mondal, H.A., Das, S., Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors (2005) J. Agric. Food Chem., 53, pp. 6725-6729
dc.descriptionMalek, K., Dietrich, R.A., Defense on multiple fronts: how do plants cope with diverse enemies? (1999) Trends Plant Sci., 4, pp. 215-219
dc.descriptionMatsushita, H., Takenaka, M., Ogawa, H., Porcine pancreatic α-amylase shows binding activity toward N-linked oligosaccharides of glycoproteins (2002) J. Biol. Chem., 227, pp. 4680-4686
dc.descriptionMichaud, D., Faye, L., Yalle, S., Eletrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors (1993) Electrophoresis, 14, pp. 94-99
dc.descriptionNathan, S.S., Kalaivani, K., Efficacy of nucleopolyhedrovirus (NPV) and azadirachtin on Spodoptera litura Fabricius (Lepidoptera: Noctuidae) (2005) Biol. Control, 34, pp. 93-98
dc.descriptionNathan, S.S., Kalaivani, K., Murugan, K., Chung, P.G., Efficacy of neem limonoids on Cnaphalocrocis medicinalis (Guenée) (Lepidoptera: Pyralidae) the rice leafholder (2005) Crop Prot., 24, pp. 760-763
dc.descriptionNathan, S.S., Chung, P.G., Murugan, K., Effect of biopesticides applied separately or together on nutritional indices of the rice leaffolder Cnaphalocrocis medicinalis (Guenée) (Lepidoptera: Pyralidae) (2005) Phytoparasitica, 33, pp. 187-195
dc.descriptionPeumans, W.J., Van Damme, E.J., Lectin as plat defense proteins (1995) Plant Phsysiol., 109, pp. 347-352
dc.descriptionPeumans, W.J., Van Damme, E.J.M., Plant lectins: versatile proteins with important perspectives in biotechnology (1998) Biotechnol. Genet. Eng. Rev., 15, pp. 199-299
dc.descriptionPowell, K.S., Spence, J., Bharati, M., Gatehouse, J.A., Gatehouse, A.M.R., Immunohistochemical and development studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper Nilaparvata lugens (Stal.) (1998) J. Insect Physiol., 44, pp. 529-539
dc.descriptionPusztai, A., Ewen, S.W.B., Grant, G., Peumans, W.J., Van Damme, E.J.M., Rubio, L., Bardocz, S., Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors (1990) Digestion, 46, pp. 308-316
dc.descriptionRichardson, M., Seed storage proteins: the enzyme inhibitors (1991) Methods in Plant Biochemistry, Amino Acids, Proteins, and Nucleic Acids, 5, pp. 259-305. , Rogers J.L.M. (Ed), Academic Press, New York
dc.descriptionRyan, C.A., Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens (1990) Annu. Rev. Phytopathol., 28, pp. 425-449
dc.descriptionScriber, J.M., Slansky Jr., F., The nutritional ecology of immature insects (1981) Ann. Ver. Entomol., 26, pp. 183-211
dc.descriptionSlansky, F., Wheeler, G.S., Food consumption and utilization responses to dietary dilution with cellulose and water by velvetbean caterpillars, Anticarsia gemmatalis (1991) Physiol. Entomol., 16, pp. 99-116
dc.descriptionStotz, H.U., Kroymann, J., Mitchell-Olds, T., Plant-insect interactions (1999) Curr. Opin. Plant Biol., 2, pp. 268-272
dc.descriptionValueva, T.A., Moslov, V.V., Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms (2004) Biochemistry, 69, pp. 1305-1309
dc.descriptionVenzon, M., Rosado, M.C., Fadini, M.A., Ciociola, A.I., Pallini, A., The potencial of neem Azal for the control of coffee leaf pests (2004) Crop Prot., 24, pp. 213-219
dc.descriptionZhu-Salzman, K., Salzman, R.A., Functional mechanics of the plant defensive Griffonia sinplicifolia lectin II: resistance to proteolysis is independent of glycoconjugate binding in the insect gut (2001) J. Econ. Entomol., 94, pp. 1280-1284
dc.descriptionZhu-Salzman, K., Shade, R.E., Koiwa, H., Salzman, R.A., Narasimhan, M., Bressan, R.A., Hasegawa, P.M., Murdock, L.L., Carbohydrate-binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II (GSII) (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 15123-15128
dc.descriptionYou, X.M., Chang, S.K.C., Effect of purified lectins on pancreatic α-amylase activities (1992) J. Agric. Food, 40, pp. 638-641
dc.languageen
dc.publisher
dc.relationComparative Biochemistry and Physiology - C Toxicology and Pharmacology
dc.rightsfechado
dc.sourceScopus
dc.titleInsecticidal Action Of Annona Coriacea Lectin Against The Flour Moth Anagasta Kuehniella And The Rice Moth Corcyra Cephalonica (lepidoptera: Pyralidae)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución