dc.creatorDias R.G.
dc.creatorPereira A.D.C.
dc.creatorNegrao C.E.
dc.creatorKrieger J.E.
dc.date2007
dc.date2015-06-30T18:51:24Z
dc.date2015-11-26T14:38:48Z
dc.date2015-06-30T18:51:24Z
dc.date2015-11-26T14:38:48Z
dc.date.accessioned2018-03-28T21:44:06Z
dc.date.available2018-03-28T21:44:06Z
dc.identifier
dc.identifierRevista Brasileira De Medicina Do Esporte. , v. 13, n. 3, p. 209 - 216, 2007.
dc.identifier15178692
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-38649094015&partnerID=40&md5=64227f1eedcb4d78b8277412f4e70602
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105096
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105096
dc.identifier2-s2.0-38649094015
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249744
dc.descriptionThis article is focused on the review of studies looking for "candidate genes" and their relationship with physical performance phenotypes in elite athletes. Our goal is to bring to readers what makes some individuals excel in some sports modalities, based on variants in genetic loci and markers. In addition, we assume the necessity to describe by what mechanisms a gene can contribute in physical performance, detailing in each part the cellular, physiological and molecular pathways involved. For this reason, we limited our discussion to a small number of genetic variants: polymorphisms R577X α-actinin 3 gene (ACTN3), C34T AMP deaminase gene (AMPD1), I/D angiotensin converting enzyme gene (ACE), -9/+9 β 2 bradykinin receptor gene (BDKRB2), and 985+185/1170 creatine kinase M gene (CK-M). We hope that this article bring some new information and refine the knowledge to the fact that the process of talent identification and an individual athletic potential maximization resulting in sport success are strongly associated with genetic variants.
dc.description13
dc.description3
dc.description209
dc.description216
dc.descriptionWolfarth, B., Rivera, M.A., Oppert, J.M., Boulay, M.R., Dionne, F.T., Chagnon, M., A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status (2000) Med Sci Sports Exerc, 32, pp. 1709-1712
dc.descriptionRankinen, T., Perusse, L., Gagnon, J., Chagnon, Y.C., Leon, A.C., Skinner, J.S., Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the HERITAGE Family Study (2000) J Appl Physiol, 88, pp. 1029-1035
dc.descriptionPayne, J., Montgomery, H., The renin-angiotensin system and physical performance (2003) Biochem Soc Trans, 31, pp. 1286-1289
dc.descriptionWolfarth, B., Bray, M.S., Hagberg, J.M., Perusse, L., Rauramaa, R., Rivera, M.A., The human gene map for performance and health-related fitness phenotypes: The 2004 update (2005) Med Sci Sports Exerc, 37, pp. 881-903
dc.descriptionMacArthur, D.G., North, K.N., A gene for speed? The evolution and function of alpha-actinin-3 (2004) Bioessays, 26, pp. 786-795
dc.descriptionSimoneau, J.A., Bouchard, C., Genetic determinism of fiber type proportion in human skeletal muscle (1995) FASEB J, 9, pp. 1091-1095
dc.descriptionScott, W., Stevens, J., Binder-Macleod, S.A., Human skeletal muscle fiber type classifications (2001) Phys Ther, 81, pp. 1810-1816
dc.descriptionClarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, M.J., Urso, M., ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women (2005) J Appl Physiol, 99, pp. 154-163
dc.descriptionBlanchard, A., Ohanian, V., Critchley, D., The structure and function of alpha-actinin (1989) J Muscle Res Cell Motil, 10, pp. 280-289
dc.descriptionYang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S., ACTN3 genotype is associated with human elite athletic performance (2003) Am J Hum Genet, 73, pp. 627-631
dc.descriptionNoegel, A., Witke, W., Schleicher, M., Calcium-sensitive non-muscle alpha-actinin contains EF-hand structures and highly conserved regions (1987) FEBS Lett, 221, pp. 391-396
dc.descriptionGimona, M., Djinovic-Carugo, K., Kranewitter, W.J., Winder, S.J., Functional plasticity of CH domains (2002) FEBS Lett, 513, pp. 98-106
dc.descriptionNorth, K.N., Beggs, A.H., Deficiency of a skeletal muscle isoform of alpha-actinin (alpha-actinin-3) in merosin-positive congenital muscular dystrophy (1996) Neuromuscul Disord, 6, pp. 229-235
dc.descriptionNorth, K.N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S., Beggs, A.H., A common nonsense mutation results in alpha-actinin-3 deficiency in the general population (1999) Nat Genet, 21, pp. 353-354
dc.descriptionMills, M., Yang, N., Weinberger, R., Vander Woude, D.L., Beggs, A.H., Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: Implications for the evolution of functional redundancy (2001) Hum Mol Genet, 10, pp. 1335-1346
dc.descriptionCheetham, M.E., Boobis, L.H., Brooks, S., Williams, C., Human muscle metabolism during sprint running (1986) J Appl Physiol, 61, pp. 54-60
dc.descriptionStathis, C.G., Febbraio, M.A., Carey, M.F., Snow, R.J., Influence of sprint training on human skeletal muscle purine nucleotide metabolism (1994) J Appl Physiol, 76, pp. 1802-1809
dc.descriptionNorman, B., Sabina, R.L., Jansson, E., Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects (2001) J Appl Physiol, 91, pp. 258-264
dc.descriptionWesterblad, H., Dahlstedt, A.J., Lannergren, J., Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle (1998) J Physiol, 510 (PART 1), pp. 269-277
dc.descriptionSabina, R.L., Morisaki, T., Clarke, P., Eddy, R., Shows, T.B., Morton, C.C., Characterization of the human and rat myoadenylate deaminase genes (1990) J Biol Chem, 265, pp. 9423-9433
dc.descriptionFishbein, W.N., Sabina, R.L., Ogasawara, N., Holmes, E.W., Immunologic evidence for three isoforms of AMP deaminase (AMPD) in mature skeletal muscle (1993) Biochim Biophys Acta, 1163, pp. 97-104
dc.descriptionVan Kuppevelt, T.H., Veerkamp, J.H., Fishbein, W.N., Ogasawara, N., Sabina, R.L., Immunolocalization of AMP-deaminase isozymes in human skeletal muscle and cultured muscle cells: Concentration of isoform M at the neuromuscular junction (1994) J Histochem Cytochem, 42, pp. 861-868
dc.descriptionMorisaki, T., Gross, M., Morisaki, H., Pongratz, D., Zollner, N., Holmes, E.W., Molecular basis of AMP deaminase deficiency in skeletal muscle (1992) Proc Natl Acad Sci U S A, 89, pp. 6457-6461
dc.descriptionNorman, B., Mahnke-Zizelman, D.K., Vallis, A., Sabina, R.L., Genetic and other determinants of AMP deaminase activity in healthy adult skeletal muscle (1998) J Appl Physiol, 85, pp. 1273-1278
dc.descriptionFishbein, W.N., Armbrustmacher, V.W., Griffin, J.L., Myoadenylate deaminase deficiency: A new disease of muscle (1978) Science, 200, pp. 545-548
dc.descriptionKar, N.C., Pearson, C.M., Muscle adenylate deaminase deficiency. Report of six new cases (1981) Arch Neurol, 38, pp. 279-281
dc.descriptionBogdanis, G.C., Nevill, M.E., Boobis, L.H., Lakomy, H.K., Nevill, A.M., Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man (1995) J Physiol, 482 (PART 2), pp. 467-480
dc.descriptionHargreaves, M., McKenna, M.J., Jenkins, D.G., Warmington, S.A., Li, J.L., Snow, R.J., Muscle metabolites and performance during high-intensity, intermittent exercise (1998) J Appl Physiol, 84, pp. 1687-1691
dc.descriptionHellsten, Y., Maclean, D., Radegran, G., Saltin, B., Bangsbo, J., Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle (1998) Circulation, 98, pp. 6-8
dc.descriptionMacLean, D.A., Sinoway, L.I., Leuenberger, U., Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans (1998) Circulation, 98, pp. 1990-1992
dc.descriptionWinder, W.W., Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle (2001) J Appl Physiol, 91, pp. 1017-1028
dc.descriptionRico-Sanz, J., Rankinen, T., Joanisse, D.R., Leon, A.S., Skinner, J.S., Wimore, J.H., Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study (2003) Physiol Genomics, 14, pp. 161-166
dc.descriptionRubio, J.C., Martin, M.A., Rabadan, M., Gomez-Gallego, F., San Juan, A.F., Alonso, J.M., Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: Does this mutation impair performance? (2005) J Appl Physiol, 98, pp. 2108-2112
dc.descriptionBroberg, S., Sahlin, K., Adenine nucleotide degradation in human skeletal muscle during prolonged exercise (1989) J Appl Physiol, 67, pp. 116-122
dc.descriptionNorman, B., Sollevi, A., Jansson, E., Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man (1988) Acta Physiol Scand, 133, pp. 97-100
dc.descriptionSahlin, K., Katz, A., Broberg, S., Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise (1990) Am J Physiol, 259, pp. C834-C841
dc.descriptionMyerson, S., Hemingway, H., Budget, R., Martin, J., Humphries, S., Montgomery, H., Human angiotensin I-converting enzyme gene and endurance performance (1999) J Appl Physiol, 87, pp. 1313-1316
dc.descriptionDzau, V.J., Circulating versus local renin-angiotensin system in cardiovascular homeostasis (1988) Circulation, 77, pp. I4-13
dc.descriptionMyerson, S.G., Montgomery, H.E., Whittingham, M., Budget, R., Martin, J., Humphries, S., Left ventricular hypertrophy with exercise and ACE gene insertion/deletion polymorphism: A randomized controlled trial with losartan (2001) Circulation, 103, pp. 226-230
dc.descriptionJonsson, J.R., Game, P.A., Head, R.J., Frewin, D.B., The expression and localization of the angiotensin-converting enzyme mRNA in human adipose tissue (1994) Blood Press, 3, pp. 72-75
dc.descriptionDragovic, T., Minshall, R., Jackman, H.L., Wang, L.X., Erdos, E.G., Kininase II-type enzymes. Their putative role in muscle energy metabolism (1996) Diabetes, 45 (SUPPL. 1), pp. S34-S37
dc.descriptionCoates, D., The angiotensin converting enzyme (ACE) (2003) Int J Biochem Cell Biol, 35, pp. 769-773
dc.descriptionWilliams, A.G., Dhamrait, S.S., Wootton, P.T., Day, S.H., Hawe, E., Payne, J.R., Bradykinin receptor gene variant and human physical performance (2004) J Appl Physiol, 96, pp. 938-942
dc.descriptionCosterousse, O., Allegrini, J., Lopez, M., Alhenc-Gelas, F., Angiotensin I-converting enzyme in human circulating mononuclear cells: Genetic polymorphism of expression in T-lymphocytes (1993) Biochem J, 290 (PART 1), pp. 33-40
dc.descriptionDanser, A.H., Schalekamp, M.A., Bax, W.A., van den Brink, A.M., Saxena, P.R., Riegger, G.A., Angiotensin-converting enzyme in the human heart. Effect of the deletion/ insertion polymorphism (1995) Circulation, 92, pp. 1387-1388
dc.descriptionHagberg, J.M., Ferrell, R.E., McCole, S.D., Wilund, K.R., Moore, G.E., V̇O 2 max is associated with ACE genotype in postmenopausal women (1998) J Appl Physiol, 85, pp. 1842-1846
dc.descriptionTouyz, R.M., Deng, L.Y., He, G., Wu, X.H., Schiffrin, E.L., Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: Role of extracellular signal-regulated kinases (1999) J Hypertens, 17, pp. 907-916
dc.descriptionKauma, H., Ikaheimo, M., Savolainen, M.J., Kiema, T.R., Rantala, A.O., Lilja, M., Variants of renin-angiotensin system genes and echocardiographic left ventricular mass (1998) Eur Heart J, 19, pp. 1109-1117
dc.descriptionLinhart, A., Sedlacek, K., Jachymova, M., Jindra, A., Beran, S., Vondracek, V., Lack of association of angiotensin-converting enzyme and angiotensinogen genes polymorphisms with left ventricular structure in young normotensive men (2000) Blood Press, 9, pp. 47-51
dc.descriptionKinugawa, T., Ogino, K., Miyakoda, H., Saitoh, M., Hisatome, I., Fujimoto, Y., Responses of catecholamines, renin-angiotensin system, and atrial natriuretic peptide to exercise in untrained men and women (1997) Gen Pharmacol, 28, pp. 225-228
dc.descriptionHigaki, J., Aoki, M., Morishita, R., Kida, I., Taniyama, Y., Tomita, N., In vivo evidence of the importance of cardiac angiotensin-converting enzyme in the pathogenesis of cardiac hypertrophy (2000) Arterioscler Thromb Vasc Biol, 20, pp. 428-434
dc.descriptionDouglas, P.S., O'Toole, M.L., Katz, S.E., Ginsburg, G.S., Hiller, W.D., Laird, R.H., Left ventricular hypertrophy in athletes (1997) Am J Cardiol, 80, pp. 1384-1388
dc.descriptionHernandez, D., de la Rosa, A., Barragan, A., Barrios, Y., Salido, E., Torres, A., The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes (2003) J Am Coll Cardiol, 42, pp. 527-532
dc.descriptionMontgomery, H., Clarkson, P., Barnard, M., Bell, J., Brynes, A., Dollery, C., Angiotensin-converting enzyme gene insertion/deletion polymorphism and response to physical training (1999) Lancet, 353, pp. 541-545
dc.descriptionWilliams AG, Rayson MP, Jubb M, World M, Woods DR, Hayward M, et al. The ACE gene and muscle performance. Nature. 2000;403:614Zhao, G., Bernstein, R.D., Hintze, T.H., Nitric oxide and oxygen utilization: Exercise, heart failure and diabetes (1999) Coron Artery Dis, 10, pp. 315-320
dc.descriptionZhang, B., Tanaka, H., Shono, N., Miura, S., Kiyonaga, A., Shindo, M., The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle (2003) Clin Genet, 63, pp. 139-144
dc.descriptionWicklmayr, M., Dietze, G., Brunnbauer, H., Rett, K., Mehnert, H., Dose-dependent effect of bradykinin on muscular blood flow and glucose uptake in man (1983) Hoppe Seylers Z Physiol Chem, 364, pp. 831-833
dc.descriptionBrull D, Dhamrait S, Myerson S, Erdmann J, Woods D, World M, et al. Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet. 2001;358:1155-6Figueroa, C.D., Dietze, G., Muller-Esterl, W., Immunolocalization of bradykinin B2 receptors on skeletal muscle cells (1996) Diabetes, 45 (SUPPL. 1), pp. S24-S28
dc.descriptionLangberg, H., Bjorn, C., Boushel, R., Hellsten, Y., Kjaer, M., Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans (2002) J Physiol, 542, pp. 977-983
dc.descriptionTaguchi, T., Kishikawa, H., Motoshima, H., Sakai, K., Nishiyama, T., Yoshizato, K., Involvement of bradykinin in acute exercise-induced increase of glucose uptake and GLUT-4 translocation in skeletal muscle: Studies in normal and diabetic humans and rats (2000) Metabolism, 49, pp. 920-930
dc.descriptionRabito, S.F., Minshall, R.D., Nakamura, F., Wang, L.X., Bradykinin B2 receptors on skeletal muscle are coupled to inositol 1,4,5-trisphosphate formation (1996) Diabetes, 45 (SUPPL. 1), pp. S29-S33
dc.descriptionRivera, M.A., Dionne, F.T., Simoneau, J.A., Perusse, L., Chagnon, M., Chagnon, Y., Muscle-specific creatine kinase gene polymorphism and V̇O 2max in the HERITAGE Family Study (1997) Med Sci Sports Exerc, 29, pp. 1311-1317
dc.descriptionEchegaray, M., Rivera, M.A., Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: Genetic and molecular evidence (2001) Sports Med, 31, pp. 919-934
dc.descriptionSteeghs, K., Heerschap, A., de Haan, A., Ruitenbeek, W., Oerlemans, F., van Deursen, J., Use of gene targeting for compromising energy homeostasis in neuromuscular tissues: The role of sarcomeric mitochondrial creatine kinase (1997) J Neurosci Methods, 71, pp. 29-41
dc.descriptionFontanet, H.L., Trask, R.V., Haas, R.C., Strauss, A.W., Abendschein, D.R., Billadello, J.J., Regulation of expression of M, B, and mitochondrial creatine kinase mRNAs in the left ventricle after pressure overload in rats (1991) Circ Res, 68, pp. 1007-1012
dc.descriptionApple, F.S., Billadello, J.J., Expression of creatine kinase M and B mRNAs in treadmill trained rat skeletal muscle (1994) Life Sci, 55, pp. 585-592
dc.descriptionRivera, M.A., Perusse, L., Simoneau, J.A., Gagnon, J., Dionne, F.T., Leon, A.S., Linkage between a muscle-specific CK gene marker and V̇O 2max in the HERITAGE Family Study (1999) Med Sci Sports Exerc, 31, pp. 698-701
dc.descriptionCoerwinkel-Driessen, M., Schepens, J., van Zandvoort, P., van Oost, B., Mariman, E., Wieringa, B., NcoI RFLP at the creatine kinase-muscle type gene locus (CKMM, chromosome 19) (1988) Nucleic Acids Res, 16, p. 8743
dc.descriptionSylven, C., Jansson, E., Olin, C., Human myocardial and skeletal muscle enzyme activities: Creatine kinase and its isozyme MB as related to citrate synthase and muscle fibre types (1983) Clin Physiol, 3, pp. 461-468
dc.descriptionApple, F.S., Tesch, P.A., CK and LD isozymes in human single muscle fibers in trained athletes (1989) J Appl Physiol, 66, pp. 2717-2720
dc.descriptionBittl, J.A., DeLayre, J., Ingwall, J.S., Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat (1987) Biochemistry, 26, pp. 6083-6090
dc.descriptionSylven, C., Jansson, E., Kallner, A., Book, K., Human creatine kinase. Isoenzymes and logistics of energy distribution (1984) Scand J Clin Lab Invest, 44, pp. 611-615
dc.descriptionYamashita, K., Yoshioka, T., Activities of creatine kinase isoenzymes in single skeletal muscle fibres of trained and untrained rats (1992) Pflugers Arch, 421, pp. 270-273
dc.descriptionBouchard, C., Leon, A.S., Rao, D.C., Skinner, J.S., Wilmore, J.H., Gagnon, J., The HERITAGE family study. Aims, design, and measurement protocol (1995) Med Sci Sports Exerc, 27, pp. 721-729
dc.languagept
dc.languageen
dc.publisher
dc.relationRevista Brasileira de Medicina do Esporte
dc.rightsaberto
dc.sourceScopus
dc.titleGenetic Polymorphisms Determining Of The Physical Performance In Elite Athletes [polimorfismos Genéticos Determinantes Da Performance Física Em Atletas De Elite]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución