Artículos de revistas
Path Integral Approach To Quantum Brownian Motion
Registro en:
Physica A: Statistical Mechanics And Its Applications. , v. 121, n. 3, p. 587 - 616, 1983.
3784371
10.1016/0378-4371(83)90013-4
2-s2.0-17144376255
Autor
Caldeira A.O.
Leggett A.J.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We apply the influence-functional method of Feynman and Vernon to the study of Brownian motion at arbitrary temperature. By choosing a specific model for the dissipative interaction of the system of interest with its environment, we are able to evaluate the influence functional in closed form and express it in terms of a few parameters such as the phenomenological viscosity coefficient. We show that in the limit h→0 the results obtained from the influence functional formalism reduce to the classical Fokker-Planck equation. In the case of a simple harmonic oscillator with arbitrarily strong damping and at arbitrary temperature, we obtain an explicit expression for the time evolution of the complete density matrix ρ{variant}(x, x′, t) when the system starts in a particular kind of pure state. We compare our results with those of other approaches to the problem of dissipation in quantum mechanics. © 1983. 121 3 587 616 2013/15478-3; FAPESP; São Paulo Research Foundation; 2013/23396-7; FAPESP; São Paulo Research Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Wax, (1954) Selected Papers on Noise and Stochastic Processes, , Dover, New York Kanai, On the Quantization of the Dissipative Systems (1948) Progress of Theoretical Physics, 3, p. 440 Louisell, (1973) Quantum Statistical Properties of Radiation, , Wiley, New York Kostin, (1972) J. Chem. Phys., 57, p. 3589 Nelson, (1966) Phys. Rev., 150, p. 1079 Yasue, (1978) Annals of Physics, 114, p. 479 Dekker, Quantization of the linearly damped harmonic oscillator (1977) Physical Review A, 16, p. 2116 Senitzky, (1960) Phys. Rev., 119, p. 670 Mori, Transport, Collective Motion, and Brownian Motion (1965) Progress of Theoretical Physics, 33, p. 423 Zwanzig, (1960) J. Chem. Phys., 33, p. 1338 Nakajima, On Quantum Theory of Transport Phenomena (1958) Progress of Theoretical Physics, 20, p. 948 Haken, (1975) Rev. Mod. Phys., 47, p. 67 Haake, Quantum Statistics in Optics and Solid State Physics (1973) Springer Tracts in Modern Physics, 66. , Springer, Berlin Koch, Van Harlingen, Clarke, (1980) Phys. Rev. Lett., 45, p. 2132 Benguria, Kac, (1981) Phys. Rev. Lett., 46, p. 1 Ford, Kac, Mazur, (1965) J. Math. Phys., 6, p. 504 Iche, Nozieres, (1978) Physica, 91 A, p. 485 Davies, (1976) Quantum Theory of Open Systems, , Academic Press, New York Schwinger, (1961) J. Math. Phys., 2, p. 407 Zwanzig, (1973) J. Stat. Phys., 9, p. 215 A.O. Caldeira and A.J. Leggett, to appear in Annals of PhysicsFeynman, Hibbs, (1965) Quantum Mechanics and Path Integrals, , McGraw-Hill, New York Feynman, Vernon, (1963) Annals of Physics, 24, p. 118 Forster, (1975) Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, , Benjamin, New York Morse, Feshbach, (1953) Methods of Theoretical Physics, , McGraw-Hill, New York, sect. 3.2 Kjeldysh, (1965) JEPT-Sov. Phys., 20, p. 1018 Nemes, de Toledo Piza, (1977) Revista Brasileira de Física, 7, p. 261 Papadopoulos, Functional integrals in Brownian motion (1968) Journal of Physics A: General Physics, 1, p. 413 Wigner, (1932) Phys. Rev., 40, p. 749 Berry, Semi-Classical Mechanics in Phase Space: A Study of Wigner's Function (1977) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 287, p. 237 Caldeira, (1980) Ph.D. Thesis, , University of Sussex, unpublished Landau, Lifshitz, (1969) Statistical Physics, p. 393. , Pergamon, London Tikochinsky, Exact propagators for quadratic Hamiltonians (1978) Journal of Mathematical Physics, 19, p. 888 Feshbach, Tikochinsky, A Festschrift for I.I. Rabi (1977) Trans. New York Ac. Sc. Ser. 2, 38, p. 44 Dekker, (1981) Phys. Rep., 80, p. 1 Dekker, (1979) Physica, 95 A, p. 311 Agarwal, (1971) Phys. Rev. A, 4, p. 739 Svin'in, (1976) Theor. Math. Fiz., 27, p. 270