Actas de congresos
Catalytic Conversion Of Glucose Using Tio2 Catalysts
Registro en:
Chemical Engineering Transactions. Italian Association Of Chemical Engineering - Aidic, v. 37, n. , p. 589 - 594, 2014.
19749791
10.3303/CET1437099
2-s2.0-84899425756
Autor
Lanziano C.S.
Rodriguez F.
Rabelo S.C.
Guirardello R.
Da Silva V.T.
Rodell C.B.
Institución
Resumen
Glucose is the most available hexose as it can be obtained from the most abundant and renewable biomass on Earth, cellulose. In addition, glucose can be catalytically transformed into furan derivates such as hydroxymethyl furfural (HMF) and furan dicarboxylic acid (FDCA) which are potential compounds to prepare polymeric materials and biofuels. The catalytic conversion of glucose can proceed via three chemical routes. Firstly, glucose isomerization can produce fructose. Secondly, the dehydration process of glucose to obtain 1,6-anhydroglucose and finally, the dehydration of fructose and small fragments such as glycolaldehyde and dihydroxyacetone through a retro-aldol condensation to obtain HMF [1,2]. It has been shown that basic catalysts are more efficient to convert glucose into fructose. However, acidic properties are also needed to facilitate the dehydration process in order to obtain furan derivates. Titanium oxide catalysts appear to be an appropriate catalyst for an industrial process whereby glucose is converted due to both its acidic and basic properties and its low synthesis cost. Based on this, glucose conversion was studied with a TiO2 catalyst obtained by a sol-gel method. The reactions were performed as a function of reaction time (2, 4, 6, and 8 h) and temperature (393, 403, 413 and 423 K). N2 physisorption analysis revealed a mesoporous structure for the titania with a pore diameter range from 10 to 110 Å, superficial area of 128 m2/g and total pore volume of the 1.7x10-7 m3/g. The structural characterization by XRD showed that the titania was present in the anatase polymorph. The catalytic results showed that the lower temperature and reaction time increases the fructose yield. However, significant amounts of HMF were detected at higher temperatures and reaction time. Copyright © 2014,AIDIC Servizi S.r.l. 37
589 594 Barrett, E.P., Joyner, L.G., Halenda, P.P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms (1951) Journal of the American Chemical Society, 73, pp. 373-380. , DOI:10.1021/ja01145a126 Baur, W.H., Khan, A.A., Rutile-type compounds. Iv. Sio2, geo2 and a comparison with other rutile-type structures (1971) Acta Crystallographica, B27, pp. 2133-2139. , DOI:10.1107/S0567740871005466 Brunauer, S., Emmett, P.H., Teller, E., Adsorption of gases in multimolecular layers (1938) Journal of the American Chemical Society, 60, pp. 309-319. , DOI: 10.1021/ja01269a023 Horn, M., Schwerdtfeger, C.F., Meagher, E.P., Refinement of the structure of anatase at several temperatures (1972) Zeitschrift für Kristallographie, 136, pp. 273-281. , DOI:10.1524/zkri.1972.136.3-4.273 Hu, L., Zhao, G., Hao, W., Tang, X., Sun, Y., Lin, L., Liu, S., Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes (2012) The Royal Society of Chemistry, 2, pp. 11184-11206. , DOI:10.1039/C2RA21811A Lecomte, J., Finiels, A., Moreau, C., Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites (2002) Starch-Stärke, 54, pp. 75-79. , DOI:10.1002/1521-379X(200202) 54:275::AID-STAR753.0.CO;2-F Lewkowski, J., Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives (2001) Arkivoc, 34, pp. 17-54. , DOI:10.1002/chin.200302269 Lima, S., Dias, A.S., Lin, Z., Brandão, P., Ferreira, P., Pillinger, M., Rocha, J., Valente, A.A., Isomerization of d-glucose to d-fructose over metallosilicate solid bases (2008) Applied Catalysis A: General, 339, pp. 21-27. , DOI:10.1016/j.apcata.2007.12.030 Lourvanij, K., Rorrer, G.L., Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders (1997) Journal of Chemical Technology & Biotechnology, 69, pp. 35-44. , DOI:10.1002/(SICI)1097-4660(199705) 69:135::AID-JCTB6853.0.CO;2-9 Lobry De Bruyn, C.A., Alberda Van Ekenstein, W., Action des alcalis sur les sucres recueil des travaux chimiques des pays-bas (1895) Journal of the Royal Netherlands Chemical Society, 14, pp. 203-216. , DOI:10.1002/recl.18950140703 Moliner, M., Roman-Leshkov, Y., Davis, M., Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 6164-6168. , DOI:10.1073/pnas.1002358107 Moreau, C., Durand, R., Roux, A., Tichit, D., Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites (2000) Applied Catalysis A: General, 193, pp. 257-264. , DOI:10.1016/S0926-860X(99)00435-4 Roman-Leshkov, Y., Barrett, C., Liu, Z., Dumesic, J., Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates (2007) Nature, 447, pp. 982-985. , DOI: 10.1038/nature05923 Román-Leshkov, Y., Moliner, M., Labinger, J., Davis, M., Mechanism of glucose isomerization using a solid lewis acid catalyst in water (2010) Angewandte Chemie-International Edition, 49, pp. 8954-8957. , DOI:http://dx.doi.org/10.1002/anie.201004689 Watanabe, M., Aizawa, Y., Iida, T., Nishimura, R., Inomata, H., Catalytic glucose and fructose conversions with tio2 and zro2 in water at 473 k: Relationship between reactivity and acid-base property determined by tpd measurement (2005) Applied Catalysis A: General, 295, pp. 150-156. , DOI:10.1016/j.apcata.2005.08.007 Watanabe, M., Aizawa, Y., Iida, T., Aida, T.M., Levy, C., Sue, K., Inomata, H., Glucose reactions with acid and base catalysts in hot compressed water at 473 k (2005) Carbohydrate Research, 340, pp. 1925-1930. , DOI:10.1016/j.carres.2005.06.017 Zakrzewska, M.E., Bogel-Lukasik, E., Bogel-Lukasik, R., Physics and chemistry of alkali metal adsorption (2011) Chemical Reviews, 111, pp. 397-417. , DOI: 10.1021/cr100171a