dc.creator | Dornelas M.C. | |
dc.creator | Camargo R.L.B. | |
dc.creator | Figueiredo L.H.M. | |
dc.creator | Takita M.A. | |
dc.date | 2007 | |
dc.date | 2015-06-30T18:50:34Z | |
dc.date | 2015-11-26T14:38:16Z | |
dc.date | 2015-06-30T18:50:34Z | |
dc.date | 2015-11-26T14:38:16Z | |
dc.date.accessioned | 2018-03-28T21:43:12Z | |
dc.date.available | 2018-03-28T21:43:12Z | |
dc.identifier | | |
dc.identifier | Genetics And Molecular Biology. , v. 30, n. 3 SUPPL., p. 769 - 779, 2007. | |
dc.identifier | 14154757 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-38049153697&partnerID=40&md5=7a29c7ed977b90f8b9d40d9adc2b6ec5 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/105039 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/105039 | |
dc.identifier | 2-s2.0-38049153697 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1249504 | |
dc.description | Floral transition is one the most drastic changes occurring during the life cycle of a plant. The shoot apical meristem switches from the production of leaves with associated secondary shoot meristems to the production of flower meristems. This transition is abrupt and generally irreversible, suggesting it is regulated by a robust gene regulatory network capable of driving sharp transitions. The moment at which this transition occurs is precisely determined by environmental and endogenous signals. A large number of genes acting within these pathways have been cloned in model herbaceous plants such as Arabidopsis thaliana. In this paper, we report the results of our search in the Citrus expressed sequence tag (CitEST) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched all sequence clusters in the CitEST database and identified more than one hundred Citrus spp sequences that codify putative conserved elements of the autonomous, vernalization, photoperiod response and gibberelic acid-controlled flowering-time pathways. Additionally, we have characterized in silico putative members of the Citrus spp homologs to the Arabidopsis CONSTANS family of transcription factors. Copyright by the Brazilian Society of Genetics. Printed in Brazil. | |
dc.description | 30 | |
dc.description | 3 SUPPL. | |
dc.description | 769 | |
dc.description | 779 | |
dc.description | Ahmad, M., Cashmore, A.R., HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photo-receptor (1993) Nature, 366, pp. 162-166 | |
dc.description | Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402 | |
dc.description | Amasino, R., Vernalization, competence, and the epigenetic memory of winter (2004) Plant Cell, 16, pp. 2553-2559 | |
dc.description | An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Heptworth, S., Turnbull, C., CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis (2004) Development, 131, pp. 3615-3626 | |
dc.description | Araki, T., Transition from vegetative to reproductive phase (2001) Curr Opin Plant Biol, 4, pp. 63-68 | |
dc.description | Ayre, B.G., Turgeon, R., Graft transmission of a floral stimulant derived from CONSTANS (2004) Plant Physiol, 135, pp. 2271-2278 | |
dc.description | Bastow, R., Dean, C., Plant sciences. Deciding when to flower (2003) Science, 302, pp. 1695-1696 | |
dc.description | Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., Samach, A., Lifschitz, E., The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA (2006) Plant J, 46, pp. 462-476 | |
dc.description | Bernier, G., Havelange, A., Houssa, C., Petitjean, A., Lejeune, P., Physiological signals that induce flowering (1993) Plant Cell, 5, pp. 1147-1155 | |
dc.description | Blazquez, M.A., Weigel, D., Integration of floral inductive signals in Arabidopsis (2000) Nature, 404, pp. 889-892 | |
dc.description | Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., Weigel, D., Gibberelins promote flowering of Arabidopsis by activating the LEAFY promoter (1998) Plant Cell, 10, pp. 791-800 | |
dc.description | Boss, P.K., Vivier, M., Matsumoto, S., Dry, I.B., Thomas, M.R., A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development (2001) Plant Mol Biol, 45, pp. 541-553 | |
dc.description | Boss, P.K., Sensi, E., Hua, C., Davies, C., Thomas, M.R., Cloning and characterization of grapevine (Vitis vinifiera L.) MADS-box genes expressed during inflorescence and berry development (2002) Plant Sci, 162, pp. 887-895 | |
dc.description | Boss, P.K., Bastow, R.M., Mylne, J.S., Dean, C., Multiple pathways in the decision to flower: Enabling, promoting, and resetting (2004) Plant Cell, 16 (SUPPL.), pp. S18-S31 | |
dc.description | Briggs, W.R., Beck, C.F., Cashmore, A.R., Christie, J.M., Hughes, J., Jarillo, J.A., Kagawa, T., Nagatani, A., The phototropin family of photoreceptors (2001) Plant Cell, 13, pp. 993-997 | |
dc.description | Chandler, J., Wilson, A., Dean, C., Arabidopsis mutants showing an altered response to vernalization (1996) Plant J, 10, pp. 637-644 | |
dc.description | Colasanti, J., Sundaresan, V., Florigen' enters the molecular age: Long-distance signals that cause plants to flower (2000) Trends Biochem Sci, 25, pp. 236-240 | |
dc.description | Dornelas, M.C., Rodriguez, A.P.M., Identifying Eucalyptus expressed sequence tags related to Arabidopsis flowering-time pathway genes (2005) Braz J Plant Physiol, 17, pp. 255-266 | |
dc.description | Dornelas, M.C., Rodriguez, A.P.M., Evolutionary conservation of genes controlling flowering pathways between Arabidopsis and grasses (2006) Floriculture, Ornamental and Plant Biotechnology, 4, pp. 272-279. , Teixeira da Silva JA ed, 1st edition. Global Science Books, London, pp | |
dc.description | Dornelas, M.C., Amaral, W.A.N., Rodriguez, A.P.M., EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues (2004) Braz J Plant Physiol, 16, pp. 105-114 | |
dc.description | Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognar, L., Nagy, F., Millar, A.J., Amasino, R.M., The ELF4 controls circadian rhythms and flowering time in Arabidopsis thaliana (2002) Nature, 419, pp. 74-77 | |
dc.description | Garcia-Luis, A., Kanduser, M., Changes in dormancy and sensitivity to vernalization in axillary buds of Satsuma mandarin examined in vitro during the annual cycle (1995) Ann Bot, 76, pp. 451-455 | |
dc.description | Garcia-Luis, A., Kanduser, M., Santamarina, P., Guardiola, J.L., Low temperature influence on flowering in Citrus. The separation of inductive and bud dormancy releasing effects (1992) Physiol Plant, 86, pp. 648-652 | |
dc.description | Garcia-Luis, A., Kanduser, M., Guardiola, J.L., The influence of fruiting on the bud sprouting and flower induction responses to chilling in Citrus (1995) J Hort Sci, 70, pp. 817-825 | |
dc.description | Griffiths, S., Dunford, R.D., Coupland, G., Laurie, D.A., The evolution of the CONSTANS-like gene families in barley, rice and Arabidopsis (2003) Plant Physiol, 131, pp. 1855-1867 | |
dc.description | Guardiola, J.L., Monerri, C., Agusti, M., The inhibitory effect of gibberellic acid on flowering in Citrus (1982) Physiol Plant, 55, pp. 136-142 | |
dc.description | Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-98Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., Coupland, G., Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs (2002) Embo J, 21, pp. 4327-4337 | |
dc.description | Hicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (2001) Plant Cell, 13, pp. 1281-1292 | |
dc.description | Huang, X., Madan, A., CAP3: A DNA sequence assembly program (1999) Genome Res, 9, pp. 868-877 | |
dc.description | Izawa, T., Takahashi, Y., Yano, M., Comparative biology comes into bloom: Genomic and genetic comparison of flowering pathways in rice and Arabidopsis (2003) Curr Opin Plant Biol, 6, pp. 113-120 | |
dc.description | Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., Dean, C., Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time (2000) Science, 290, pp. 344-347 | |
dc.description | Koltunow, A.M., Smith, A.V., Sykes, S.R., Molecular and conventional breeding strategies for seedless Citrus (2000) Acta Hort, 535, pp. 169-174 | |
dc.description | Kotoda, N., Wada, M., Komori, S., Kidou, S., Abe, K., Masuda, T., Soejima, J., Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple (2000) J Amer Soc Hort Sci, 125, pp. 398-403 | |
dc.description | Krajewski, A.J., Rabe, E., Citrus flowering: A critical evaluation (1995) J Hort Sci, 70, pp. 357-374 | |
dc.description | Kyozuka, J., Harcourt, R., Peacock, W.J., Dennis, E.S., Eucalyptus has functional equivalents of the Arabidopsis AP1 gene (1997) Plant Mol Biol, 35, pp. 573-584 | |
dc.description | Lagercrantz, U., Axelsson, T., Rapid evolution of the family of CONSTANS like genes in plants (2000) Mol Biol Evol, 17, pp. 1499-1507 | |
dc.description | Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., Cashmere, A.R., Enhancement of the blue-light sensitivity of Arabidopsis young seedlings by a blue-light receptor cry2 (1998) Proc Natl Acad Sci USA, 95, pp. 2686-2690 | |
dc.description | Lohmann, J.U., Weigel, D., Building beauty: The genetic control of floral patterning (2002) Dev Cell, 2, pp. 135-142 | |
dc.description | Long, J., Barton, M.K., Initiation of axillary and floral meristems in Arabidopsis (2000) Dev Biol, 218, pp. 341-353 | |
dc.description | Lord, E.M., Eckard, K.J., Shoot development in Citrus sinensis L. (Washington navel orange). II. Alteration of developmental fate of flowering shoots after GA3 treatment (1987) Bot Gaz, 148, pp. 17-22 | |
dc.description | Marchler-Bauer, A., Anderson, J.B., Cherukuri, P.F., DeWeese-Scott, C., Geer, L.Y., Gwadz, M., He, S., Ke, Z., CDD: A Conserved Domain Database for protein classification (2005) Nucleic Acids Res, 33, pp. 192-196 | |
dc.description | Martin, J., Storgaard, M., Andersen, C.H., Nielsen, K.K., Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog (2004) Plant Mol Biol, 56, pp. 159-169 | |
dc.description | Michaels, S.D., Amasino, R.M., FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering (1999) Plant Cell, 11, pp. 949-956 | |
dc.description | Mockler, T.H., Guo, H., Yang, H., Duong, H., Lin, C., Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction (1999) Development, 126, pp. 2073-2082 | |
dc.description | Monselise, S.P., Halevy, A.H., Chemical inhibition and promotion of citrus flower bud induction (1964) Am Soc Hort Sci, 84, pp. 141-146 | |
dc.description | Moon, Y.-H., Chen, L., Pan, R.L., Chang, J.-S., Zhu, T., Maffeo, D.M., Sung, Z.R., EMF genes maintain vegetative development by repressing the flower program in Arabidopsis (2003) Plant Cell, 15, pp. 681-693 | |
dc.description | Mouradov, A., Cremer, F., Coupland, G., Control of flowering time: Interacting pathways as a basis for diversity (2002) Plant Cell, (SUPPL.EMENT), pp. S11-S130 | |
dc.description | Ohto, M., Onai, K., Furukawa, Y., Aoki, E., Araki, T., Nakamura, K., Effects of sugar on vegetative development and floral transition in Arabidopsis (2001) Plant Physiol, 127, pp. 252-261 | |
dc.description | Parcy, F., Flowering: A time for integration (2005) Int J Dev Biol, 49, pp. 585-593 | |
dc.description | Peacock, W.J., Dennis, E.S., The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation (1999) Plant Cell, 11, pp. 445-458 | |
dc.description | Pena, L., Martin-Trillo, M., Juarez, J., Pina, J.A., Navarro, L., Martinez-Zapater, J.M., Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time (2001) Nat Biotech, 19, pp. 263-267 | |
dc.description | Pillitteri, L.J., Lovatt, C.J., Walling, L.L., Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck 'Washington' (2004) J Amer Soc Hort Sci, 129, pp. 846-856 | |
dc.description | Putterill, J., Robson, F., Lee, K., Simon, R., Coupland, G., The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors (1995) Cell, 80, pp. 847-857 | |
dc.description | Reed, J.W., Nagpal, P., Poole, D.S., Furaya, M., Chory, J., Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development (1993) Plant Cell, 5, pp. 147-157 | |
dc.description | Robson, F., Costa, M.M.R., Hepworth, S., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., Coupland, G., Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants (2001) Plant J, 28, pp. 619-631 | |
dc.description | Saitou, N., Nei, M., The neighbour joining method: A new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4, pp. 406-425 | |
dc.description | Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., Dennis, E.S., The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC) (2000) Proc Natl Acad Sci USA, 97, pp. 3753-3758 | |
dc.description | Simpson, G.G., Dean, C., Arabidopsis, the Rosetta stone of flowering time? (2002) Science, 296, pp. 285-289 | |
dc.description | Simpson, G.G., Gendall, A.R., Dean, C., When to switch to flowering (1999) Annu Rev Cell Dev Biol, 15, pp. 519-550 | |
dc.description | Southerton, S.G., Strauss, S.H., Olive, M.R., Harcourt, R.L., Decroocq, V., Zhu, X., Llewellyn, D.J., Dennis, E.S., Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY (1998) Plant Mol Biol, 37, pp. 897-910 | |
dc.description | Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis thaliana (2001) Nature, 410, pp. 1116-1120 | |
dc.description | Sung, S.K., Yu, G.H., An, G., Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple (1999) Plant Physiol, 120, pp. 969-978 | |
dc.description | Sung, S.K., Yu, G.H., Nam, J., Jeong, D.H., An, G., Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple (2000) Planta, 210, pp. 519-528 | |
dc.description | Takada, S., Goto, K., TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time (2003) Plant Cell, 15, pp. 2856-2865 | |
dc.description | Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680 | |
dc.description | Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G., Photoreceptor regulation of CONSTANS protein in photoperiodic flowering (2004) Science, 303, pp. 1003-1006 | |
dc.description | Wilson, R.N., Heckman, J.W., Somerville, C.R., Gibberelin is required for flowering in Arabidopsis thaliana under short days (1992) Plant Physiol, 100, pp. 403-408 | |
dc.description | Yao, J.-L., Dong, Y.-H., Kvarnheden, A., Morris, B., Seven MADS-box genes in apple are expressed in different parts of the fruit (1999) J Amer Soc Hort Sci, 124, pp. 8-13 | |
dc.description | Zeevaart, J.A.D., Physiology of flower formation (1976) Annu Rev Plant Physiol, 27, pp. 321-348 | |
dc.description | Zhang, H., van Necker, S., The VERNALIZATION 4 gene encodes a novel regulator of FLOWERING LOCUS C (2002) Plant J, 31, pp. 663-667 | |
dc.description | Zobell, O., Coupland, G., Reiss, B., The family of CONSTANS-like genes in Physcomitrella patens (2005) Plant Biol, 7, pp. 266-275 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Genetics and Molecular Biology | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | A Genetic Framework For Flowering-time Pathways In Citrus Spp | |
dc.type | Artículos de revistas | |