dc.creator | Llibre J. | |
dc.creator | Teixeira M.A. | |
dc.creator | Torregrosa J. | |
dc.date | 2007 | |
dc.date | 2015-06-30T18:49:57Z | |
dc.date | 2015-11-26T14:38:10Z | |
dc.date | 2015-06-30T18:49:57Z | |
dc.date | 2015-11-26T14:38:10Z | |
dc.date.accessioned | 2018-03-28T21:43:02Z | |
dc.date.available | 2018-03-28T21:43:02Z | |
dc.identifier | | |
dc.identifier | Mathematical Physics Analysis And Geometry. , v. 10, n. 3, p. 237 - 249, 2007. | |
dc.identifier | 13850172 | |
dc.identifier | 10.1007/s11040-007-9030-7 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-38349188876&partnerID=40&md5=3a2bad47ebc3d1dbe50453d1539ec584 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/104988 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/104988 | |
dc.identifier | 2-s2.0-38349188876 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1249462 | |
dc.description | The goal of this paper is double. First, we illustrate a method for studying the bifurcation of limit cycles from the continuum periodic orbits of a k-dimensional isochronous center contained in n with n ≤ k, when we perturb it in a class of C2 differential systems. The method is based in the averaging theory. Second, we consider a particular polynomial differential system in the plane having a center and a non-rational first integral. Then we study the bifurcation of limit cycles from the periodic orbits of this center when we perturb it in the class of all polynomial differential systems of a given degree. As far as we know this is one of the first examples that this study can be made for a polynomial differential system having a center and a non-rational first integral. © 2007 Springer Science+Business Media B.V. | |
dc.description | 10 | |
dc.description | 3 | |
dc.description | 237 | |
dc.description | 249 | |
dc.description | Abramowitz, M., Stegun, I.A., Bessel Functions J and Y, 9.1 (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, pp. 358-364. , Dover New York | |
dc.description | Buicǎ, A., Françoise, J.P., Llibre, J., Periodic solutions of nonlinear periodic differential systems with a small parameter (2007) Commun. Pure Appl. Anal., 6, pp. 103-111 | |
dc.description | Champneys, A.R., Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics (1998) Phys. D, 112, pp. 158-186 | |
dc.description | Fabry, C., Mawhin, J., Properties of solutions of some forced nonlinear oscillations at resonance (1999) Proc. of the Second Conference on Nonlinear Analysis, pp. 103-118. , Progress in Nonlinear Analysis Tianjin, China | |
dc.description | Li, C., Christopher, C., Li, C., Abelian integrals and applications to weak Hilbert's 16 th problem (2007) Limit Cycles of Differential Equations. Advanced Courses in Mathematics, pp. 91-162. , CRM Barcelona, Birkhaüser Basel | |
dc.description | Li, J., Limit cycles bifurcated from a reversible quadratic center (2005) Qual. Theory Dyn. Syst., 6, pp. 205-216 | |
dc.description | Malkin, I.G., Some problems of the theory of nonlinear oscillations (1956) Gosudarstv. Izdat. Tehn.-Teor. Lit., , Moscow Russian | |
dc.description | Ostrovski, L., On the existence of stationary solitons (1979) Phys. Lett. A, 74, pp. 177-170 | |
dc.description | Peletier, L.A., Troy, W.C., Spatial patterns described by the extended Fisher-Komolgorov equation: Kinks (1995) Differential Integral Equations, 8, pp. 1279-1304 | |
dc.description | Peletier, L.A., Troy, W.C., (2001) Spatial Patterns. Higher Order Models in Physics and Mechanics Progress in Nonlinear Differential Equations and Their Applications, 5. , Birkhaüser Boston | |
dc.description | Roseau, M., (1966) Vibrations Non Linéaires et Théorie de la Stabilité (French) Springer Tracts in Natural Philosophy, 8. , Springer Berlin Heidelberg New York | |
dc.description | Sanchez, L., Boundary value problems for some fourth order ordinary differential equations (1990) Appl. Anal., 38, pp. 161-177 | |
dc.description | Sanders, J.A., Verhulst, F., Averaging methods in nonlinear dynamical systems (1985) Appl. Math. Sci., 59, pp. 1-247 | |
dc.description | Verhulst, F., (1991) Nonlinear Differential Equations and Dynamical Systems, Universitext, , Springer Berlin Heidelberg New York | |
dc.language | en | |
dc.publisher | | |
dc.relation | Mathematical Physics Analysis and Geometry | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Limit Cycles Bifurcating From A K-dimensional Isochronous Center Contained In ℝ N With K ≤ N | |
dc.type | Artículos de revistas | |