dc.creatorAlbarelli J.Q.
dc.creatorMian A.
dc.creatorSantos D.T.
dc.creatorEnsinas A.V.
dc.creatorMarechal F.
dc.creatorMeireles M.A.A.
dc.date2015
dc.date2015-06-25T12:51:54Z
dc.date2015-11-26T14:37:57Z
dc.date2015-06-25T12:51:54Z
dc.date2015-11-26T14:37:57Z
dc.date.accessioned2018-03-28T21:42:35Z
dc.date.available2018-03-28T21:42:35Z
dc.identifier
dc.identifierJournal Of Supercritical Fluids. Elsevier, v. 96, n. , p. 133 - 143, 2015.
dc.identifier8968446
dc.identifier10.1016/j.supflu.2014.09.009
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84918838472&partnerID=40&md5=17bfa1df93fe91c3cb0ca2bc146d0570
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85305
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85305
dc.identifier2-s2.0-84918838472
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249349
dc.descriptionThe present study evaluates the use of supercritical fluid technology, particularly supercritical water gasification (SCWG), to add value to residues from a sugarcane biorefinery that produces first and second generation ethanol. This case study aims at elucidating how process system engineering tools such as thermal process integration, life cycle analysis, economic evaluation and multi-objective optimization can contribute to minimizing some future challenges of the industrial implementation of supercritical fluid-based technologies, which were discussed in the Workshop on Supercritical Fluids and Energy - SFE'13. In addition, this case study exposes future perspectives in terms of the requirements to further develop this field. The optimized solutions of the evaluated case showed that the SCWG process increases the overall efficiency of the process in terms of energy and carbon fixation. It decreases the CO2 equivalent emissions and it leads to a thermally self-sufficient process. The economic analysis showed a high investment cost but a feasibility of using the current market prices for the produced fuels and electricity.
dc.description96
dc.description
dc.description133
dc.description143
dc.descriptionHofsetz, K., Silva, M.A., Brazilian sugarcane bagasse: Energy and non-energy consumption (2012) Biomass and Bioenergy, 46, pp. 564-573
dc.descriptionAlbarelli, J.Q., Ensinas, A.V., Silva, M.A., Product diversification to enhance economic viability of second generation ethanol production in Brazil: The case of the sugar and ethanol joint production (2014) Chemical Engineering Research and Design, 92, pp. 1470-1481
dc.descriptionStephen, J.D., Mabee, W.E., Saddler, J.N., Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction (2012) Biofuels, Bioproducts and Biorefining, 6, pp. 159-176
dc.descriptionClements, L.D., Van Dyne, D.L., The lignocellulosic biorefinery: A strategy for returning to a sustainable source of fuels and industrial organic chemicals (2006) Biorefineries - Industrial Processes and Products: Status Quo and Future Directions, pp. 115-128. , B. Kamm, P.R. Gruber, M. Kamm, Wiley-VCH Weinheim
dc.descriptionDemirbas, A., Biorefineries: Current activities and future developments (2009) Energy Conversion and Management, 50, pp. 2782-2801
dc.descriptionKamm, B., Introduction of biomass and biorefineries (2013) The Role of Green Chemistry in Biomass Processing and Conversion, pp. 1-26. , H. Xie, N. Gathergood, John Wiley & Sons, Inc. New Jersey
dc.descriptionEnsinas, A.V., Codina, V., Maréchal, F., Albarelli, J.Q., Silva, M.A., Thermo-economic optimization of integrated first and second generation sugarcane ethanol plant (2013) Chemical Engineering Transactions, 35, pp. 523-528
dc.descriptionKang, S., Li, X., Fan, J., Chang, J., Hydrothermal conversion of lignin: A review (2013) Renewable and Sustainable Energy Reviews, 27, pp. 546-558
dc.descriptionSato, T., Furusawa, T., Ishiyama, Y., Sugito, H., Miura, Y., Sato, M., Suzuki, N., Itoh, N., Effect of water density on the gasification of lignin with magnesium oxide supported nickel catalysts in supercritical water (2006) Industrial & Engineering Chemistry Research, 45, pp. 615-622
dc.descriptionGoodwin, A.K., Rorrer, G.L., Modeling of supercritical water gasification of xylose to hydrogen-rich gas in a hastelloy microchannel reactor (2011) Industrial & Engineering Chemistry Research, 50, pp. 7172-7182
dc.descriptionLoppinet-Serani, A., Reverte, C., Cansell, F., Aymonier, C., Supercritical water biomass gasification process as a successful solution to valorize wine distillery wastewaters (2013) ACS Sustainable Chemistry & Engineering, 1, pp. 110-117
dc.descriptionKruse, A., Hydrothermal biomass gasification (2009) J. Supercritical Fluids, 47, pp. 391-399
dc.descriptionYe, X.P., Cheng, L., Ma, H., Bujanovic, B., Goundalkar, M.J., Amidon, T.E., Biorefinery with water (2013) The Role of Green Chemistry in Biomass Processing and Conversion, pp. 135-180. , H. Xie, N. Gathergood, John Wiley & Sons, Inc. New Jersey
dc.descriptionZöhrer, H., Vogel, F., Hydrothermal catalytic gasification of fermentation residues from a biogas plant (2013) Biomass and Bioenergy, 53, pp. 138-148
dc.description(2006) Environmental Management - Life Cycle Assessment - Principles and Framework, , http://www.iso.org/, Iso 14040 International Standard Available from
dc.description(2006) Environmental Management - Life Cycle Assessment - Requirements and Guidelines, , http://www.iso.org/, Iso 14044 International Standard Available from
dc.descriptionGerber, L., Gassner, M., Maréchal, F., Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass (2011) Computers and Chemical Engineering, 35, pp. 1265-1280
dc.description(2013) Workshop on Supercritical Fluids and Energy - SFE'13, , http://lasefi.com.br/sfe13/, Campinas, Brazil, 8-11 December 2013 Available from
dc.description(2010) Aspen Plus, V. 7.2, , http://www.aspentech.com/, Available from
dc.descriptionRein, P., (2007) Cane Sugar Engineering, , Verlag Dr. Albert Bartens KG Berlin
dc.descriptionCarrasco, C., Baudel, H.M., Sendelius, J., Modig, T., Roslander, C., Galbe, M., Hahn-Hägerdal, B., Lidén, G., SO2 catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse (2010) Enzyme and Microbial Technology, 46, pp. 64-73
dc.descriptionArantes, V., Saddler, J.N., Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates (2011) Biotechnology for Biofuels, 4, pp. 1-16
dc.description(2013) Belsim Vali 4.7.0.0, , http://www.belsim.com/, Available from
dc.descriptionGassner, M., Vogel, F., Heyen, G., Maréchal, F., Optimal process design for the polygeneration of SNG, power and heat by hydrothermal gasification of waste biomass: Thermo-economic process modelling and integration (2011) Energy & Environmental Science, 4, pp. 1726-1741
dc.descriptionWaldner, M.H., (2007) Catalytic Hydrothermal Gasification of Biomass for the Production of Synthetic Natural Gas, , (Ph.D. thesis) Eidgenössische Technische Hochschule Zürich (ETH) Zürich, Switzerland
dc.descriptionBolliger, R., (2010) Méthodologie de la Synthèse des Systems Énergétiques Industriels, , (Ph.D. thesis) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
dc.descriptionMolyneaux, A., Leyland, G., Favrat, D., Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps (2010) Energy, 35, pp. 751-758
dc.descriptionGassner, M., Maréchal, F., Methodology for the optimal thermo-economic, multi-objective design of thermochemical fuel production from biomass (2009) Computers & Chemical Engineering, 33, pp. 769-781
dc.description(2013) OSMOSE Platform: A Tool for the Design and Analysis of Integrated Energy Systems, , http://leni.epfl.ch/osmose
dc.descriptionLinnhoff, B., (1982) User Guide on Process Integration for the Efficient Use of Energy, , 1st ed. IChemE Rugby
dc.descriptionTurton, R., (2009) Analysis, Synthesis, and Design of Chemical Processes, , 3rd ed. Prentice-Hall Upper Saddle River
dc.descriptionUlrich, G., Vasudevan, P., (2003) A Guide to Chemical Engineering Process Design and Economics: A Practical Guide, , 2nd ed. CRC Boca Raton
dc.descriptionGerber, L., (2012) Integration of Life Cycle Assessment in the Conceptual Design of Renewable Energy Conversion Systems, , (Ph.D. thesis) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland
dc.description(2010) Implementation of Life Cycle Impact Assessment Methods, , http://www.ecoinvent.org/fileadmin/documents/en/03_LCIA-Implementation-v2.2.pdf, Ecoinventreport St. Gallen Available from: (accessed 01.06.13)
dc.description(2013) Economic Indicators. Marshall & Swift Equipment Cost Index, , https://www.marshallswift.com/p-30-marshall-valuation-service.aspx
dc.description(2012) UNICA Preço-teto de Leilão de Energia Desencoraja Investimentos em Bioeletricidade, , http://www.unica.com.br/noticias/show.asp%3FnwsCode=%7B3985304E-7262-4ED3-8EDE-D85A38934B72%7D
dc.descriptionHumbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., (2011) Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol. Technical Report. NREL/TP-5100-47764
dc.descriptionElia Neto, A., (2009) Manual de Conservação e Reuso de Água Na Agroindústria Sucroenergética, , Agência Nacional de Águas (ANA) Brasilia
dc.descriptionKlein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W., The challenge of enzyme cost in the production of lignocellulosic biofuels (2012) Biotechnology and Bioengineering, 109, pp. 1083-1087
dc.languageen
dc.publisherElsevier
dc.relationJournal of Supercritical Fluids
dc.rightsfechado
dc.sourceScopus
dc.titleValorization Of Sugarcane Biorefinery Residues Using Supercritical Water Gasification: A Case Study And Perspectives
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución