dc.creator | Puma-Villanueva W.J. | |
dc.creator | Dos Santos E.P. | |
dc.creator | Von Zuben F.J. | |
dc.date | 2007 | |
dc.date | 2015-06-30T18:49:45Z | |
dc.date | 2015-11-26T14:37:56Z | |
dc.date | 2015-06-30T18:49:45Z | |
dc.date | 2015-11-26T14:37:56Z | |
dc.date.accessioned | 2018-03-28T21:42:32Z | |
dc.date.available | 2018-03-28T21:42:32Z | |
dc.identifier | 142441380X; 9781424413805 | |
dc.identifier | Ieee International Conference On Neural Networks - Conference Proceedings. , v. , n. , p. 3068 - 3073, 2007. | |
dc.identifier | 10987576 | |
dc.identifier | 10.1109/IJCNN.2007.4371450 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-51749092208&partnerID=40&md5=6d0f44b67de45512f90250d554040c7d | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/104971 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/104971 | |
dc.identifier | 2-s2.0-51749092208 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1249335 | |
dc.description | In an attempt to implement long-term time series prediction based on the recursive application of a one-step-ahead multilayer neural network predictor, we have considered the eleven short time series provided by the organizers of the Special Session NN3 Neural Network Forecasting Competition, and have proposed a joint application of a variable selection technique and a clustering procedure. The purpose was to define unbiased partition subsets and predictors with high generalization capability, based on a wrapper methodology. The proposed approach overcomes the performance of the predictor that considers all the lags in the regression vector. After obtaining the eleven long-term predictors, we conclude the paper presenting the eighteen multi-step predictions for each time series, as requested in the competition. ©2007 IEEE. | |
dc.description | | |
dc.description | | |
dc.description | 3068 | |
dc.description | 3073 | |
dc.description | Puma-Villanueva W.J. & Von Zuben, F.J. Data partition and variable selection for time series prediction using wrappers. IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, July 16-21, 2006Box, G.E.P., Jenkins, G.M., Time Series Analysis: Forecasting, and Control. Holden Day, San Francisco, CA. 1976Guyon, I., Elisseeff, A., An introduction to variable and feature selection (2003) Journal of Machine Learning Research, 3, pp. 1157-1182 | |
dc.description | Kohavi, R., John, G., Wrappers for Feature Subset Selection (1997) Artificial Intelligence, 97 (1-2), pp. 273-324 | |
dc.description | Bonnlander, B.V., (1996) Nonparametric selection of input variables for connectionist learning, , PhD thesis, University of Colorado | |
dc.description | Cover, T.M., Thomas, J.A., (1991) Elements of Information Theory, , Wiley, New York | |
dc.description | Fast, F.F., Binary Feature Selection with Conditional Mutual Information (2004) Journal of Machine Learning Research, 5, pp. 1531-1555 | |
dc.description | Wang, G., Lochovsky, F.H., Feature selection with conditional mutual information maximin in text categorization (2004) Conference on Information and Knowledge Management, pp. 342-349 | |
dc.description | Leray, P., Gallinari, P., Feature selection with neural networks (1999) Behaviormetrika (special issue on Analysis of Knowledge Representation in Neural Network Models), 26 (1), pp. 145-166 | |
dc.description | Conway, A.J., Macpherson, K.P., Brown, J.C., Delayed time series predictions with neural networks (1998) Neurocomputing, 18 (1-3), pp. 81-89 | |
dc.description | Nelson, M., Hill, T., Remus, T., O'Connor, M., Time series forecasting using NNs: Should the data be deseasonalized first (1999) Journal of Forecasting, 18, pp. 359-367 | |
dc.description | Ripley, B., (1993) Statistical aspects of neural networks. In Chaos and Networks - Statistical and Probabilistic Aspects, pp. 40-123. , eds O. Barnorff-Nielsen, J. Jensen and W. Kendall, London: Chapman and Hall | |
dc.description | Sharda, R., Patil, R.B., Conectionist approach to time series prediction: An empirical test (1992) Journal of Intelligent Manufacturiong, 3, pp. 317-323 | |
dc.description | Cherkassky, V., Mulier, F., (1998) Learning from data, concepts, theory and methods, , John Wiley & Sons, New York | |
dc.description | Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators (1989) Neural Networks, 2, pp. 359-366 | |
dc.description | Foster, W.R., Collopy, F., Ungar, L.H., Neural network forecasting of short, noisly time series (1992) Comput. Chem. Engng, 16, pp. 293-297 | |
dc.description | Lima, C.A.M., Puma-Villanueva, W.J., dos Santos, E.P., Von Zuben, F.J., Mixture of experts applied to financial time series prediction (2004) Proceedings of the XIII Brazilian Symposium on Neural Networks, , in Portuguese, paper no. 3708 | |
dc.description | Refenes, A.N., Azema-Barac, M., Karousssos, S.A., Currency exchange rate forecasting by error backpropagation (1992) Proceedings of the Twenty-Fifth Annual Hawaii International Conference on System Sciences, 4, pp. 504-515 | |
dc.description | Tang, Z., de Almeida, C., Fishwick, P.A., Time series forecasting using neural networks vs. Box-Jenkins methodology (1991) Simulation, 57 (5), pp. 303-310 | |
dc.description | Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., The accuracy of extrapolation (time series) methods: Results of a forecasting competition (1982) Journal of Forecasting, 1, pp. 111-153 | |
dc.description | Makridakis, S., Forecasting Accuracy and System Complexity (1995) RAIRO, 29 (3), pp. 259-283 | |
dc.description | Hartigan, J., Wang, M., A K-means clustering algorithm (1979) Applied Statistics, 28, pp. 100-108 | |
dc.description | Bishop, C.M., (1995) Neural Networks for Pattern Recognition, , Clarendon Press, Oxford | |
dc.description | Tumer, K. and Ghosh, J. Theoretical foundations of linear and order statistics combiners for neural pattern classifiers, IEEE Transactions on Neural Networks, March 1995Cellucci, C.J. | |
dc.description | Albano, A. M. | |
dc.description | Rapp, P. E. Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms. Physical Review E 71, pp.066208-1-14, 2005Hansen, L.K., Salamon, P., Neural network ensembles (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (10), pp. 993-1001 | |
dc.description | Hashem, S., Schmeiser, B., Yih, Y., Optimal linear combinations of neural networks: An overview (1994) Proceedings of the 1994 IEEE International Conference on Neural Networks, , Orlando, FL | |
dc.language | en | |
dc.publisher | | |
dc.relation | IEEE International Conference on Neural Networks - Conference Proceedings | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Long-term Time Series Prediction Using Wrappers For Variable Selection And Clustering For Data Partition | |
dc.type | Actas de congresos | |