dc.creatorPuma-Villanueva W.J.
dc.creatorDos Santos E.P.
dc.creatorVon Zuben F.J.
dc.date2007
dc.date2015-06-30T18:49:45Z
dc.date2015-11-26T14:37:56Z
dc.date2015-06-30T18:49:45Z
dc.date2015-11-26T14:37:56Z
dc.date.accessioned2018-03-28T21:42:32Z
dc.date.available2018-03-28T21:42:32Z
dc.identifier142441380X; 9781424413805
dc.identifierIeee International Conference On Neural Networks - Conference Proceedings. , v. , n. , p. 3068 - 3073, 2007.
dc.identifier10987576
dc.identifier10.1109/IJCNN.2007.4371450
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-51749092208&partnerID=40&md5=6d0f44b67de45512f90250d554040c7d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104971
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104971
dc.identifier2-s2.0-51749092208
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249335
dc.descriptionIn an attempt to implement long-term time series prediction based on the recursive application of a one-step-ahead multilayer neural network predictor, we have considered the eleven short time series provided by the organizers of the Special Session NN3 Neural Network Forecasting Competition, and have proposed a joint application of a variable selection technique and a clustering procedure. The purpose was to define unbiased partition subsets and predictors with high generalization capability, based on a wrapper methodology. The proposed approach overcomes the performance of the predictor that considers all the lags in the regression vector. After obtaining the eleven long-term predictors, we conclude the paper presenting the eighteen multi-step predictions for each time series, as requested in the competition. ©2007 IEEE.
dc.description
dc.description
dc.description3068
dc.description3073
dc.descriptionPuma-Villanueva W.J. & Von Zuben, F.J. Data partition and variable selection for time series prediction using wrappers. IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, July 16-21, 2006Box, G.E.P., Jenkins, G.M., Time Series Analysis: Forecasting, and Control. Holden Day, San Francisco, CA. 1976Guyon, I., Elisseeff, A., An introduction to variable and feature selection (2003) Journal of Machine Learning Research, 3, pp. 1157-1182
dc.descriptionKohavi, R., John, G., Wrappers for Feature Subset Selection (1997) Artificial Intelligence, 97 (1-2), pp. 273-324
dc.descriptionBonnlander, B.V., (1996) Nonparametric selection of input variables for connectionist learning, , PhD thesis, University of Colorado
dc.descriptionCover, T.M., Thomas, J.A., (1991) Elements of Information Theory, , Wiley, New York
dc.descriptionFast, F.F., Binary Feature Selection with Conditional Mutual Information (2004) Journal of Machine Learning Research, 5, pp. 1531-1555
dc.descriptionWang, G., Lochovsky, F.H., Feature selection with conditional mutual information maximin in text categorization (2004) Conference on Information and Knowledge Management, pp. 342-349
dc.descriptionLeray, P., Gallinari, P., Feature selection with neural networks (1999) Behaviormetrika (special issue on Analysis of Knowledge Representation in Neural Network Models), 26 (1), pp. 145-166
dc.descriptionConway, A.J., Macpherson, K.P., Brown, J.C., Delayed time series predictions with neural networks (1998) Neurocomputing, 18 (1-3), pp. 81-89
dc.descriptionNelson, M., Hill, T., Remus, T., O'Connor, M., Time series forecasting using NNs: Should the data be deseasonalized first (1999) Journal of Forecasting, 18, pp. 359-367
dc.descriptionRipley, B., (1993) Statistical aspects of neural networks. In Chaos and Networks - Statistical and Probabilistic Aspects, pp. 40-123. , eds O. Barnorff-Nielsen, J. Jensen and W. Kendall, London: Chapman and Hall
dc.descriptionSharda, R., Patil, R.B., Conectionist approach to time series prediction: An empirical test (1992) Journal of Intelligent Manufacturiong, 3, pp. 317-323
dc.descriptionCherkassky, V., Mulier, F., (1998) Learning from data, concepts, theory and methods, , John Wiley & Sons, New York
dc.descriptionHornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators (1989) Neural Networks, 2, pp. 359-366
dc.descriptionFoster, W.R., Collopy, F., Ungar, L.H., Neural network forecasting of short, noisly time series (1992) Comput. Chem. Engng, 16, pp. 293-297
dc.descriptionLima, C.A.M., Puma-Villanueva, W.J., dos Santos, E.P., Von Zuben, F.J., Mixture of experts applied to financial time series prediction (2004) Proceedings of the XIII Brazilian Symposium on Neural Networks, , in Portuguese, paper no. 3708
dc.descriptionRefenes, A.N., Azema-Barac, M., Karousssos, S.A., Currency exchange rate forecasting by error backpropagation (1992) Proceedings of the Twenty-Fifth Annual Hawaii International Conference on System Sciences, 4, pp. 504-515
dc.descriptionTang, Z., de Almeida, C., Fishwick, P.A., Time series forecasting using neural networks vs. Box-Jenkins methodology (1991) Simulation, 57 (5), pp. 303-310
dc.descriptionMakridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., The accuracy of extrapolation (time series) methods: Results of a forecasting competition (1982) Journal of Forecasting, 1, pp. 111-153
dc.descriptionMakridakis, S., Forecasting Accuracy and System Complexity (1995) RAIRO, 29 (3), pp. 259-283
dc.descriptionHartigan, J., Wang, M., A K-means clustering algorithm (1979) Applied Statistics, 28, pp. 100-108
dc.descriptionBishop, C.M., (1995) Neural Networks for Pattern Recognition, , Clarendon Press, Oxford
dc.descriptionTumer, K. and Ghosh, J. Theoretical foundations of linear and order statistics combiners for neural pattern classifiers, IEEE Transactions on Neural Networks, March 1995Cellucci, C.J.
dc.descriptionAlbano, A. M.
dc.descriptionRapp, P. E. Statistical validation of mutual information calculations: Comparison of alternative numerical algorithms. Physical Review E 71, pp.066208-1-14, 2005Hansen, L.K., Salamon, P., Neural network ensembles (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (10), pp. 993-1001
dc.descriptionHashem, S., Schmeiser, B., Yih, Y., Optimal linear combinations of neural networks: An overview (1994) Proceedings of the 1994 IEEE International Conference on Neural Networks, , Orlando, FL
dc.languageen
dc.publisher
dc.relationIEEE International Conference on Neural Networks - Conference Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleLong-term Time Series Prediction Using Wrappers For Variable Selection And Clustering For Data Partition
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución