dc.creatorSierra-Garcia I.N.
dc.creatorAlvarez J.C.
dc.creatorDe Vasconcellos S.P.
dc.creatorDe Souza A.P.
dc.creatorDos Santos Neto E.V.
dc.creatorDe Oliveira V.M.
dc.date2014
dc.date2015-06-25T17:55:15Z
dc.date2015-11-26T14:37:55Z
dc.date2015-06-25T17:55:15Z
dc.date2015-11-26T14:37:55Z
dc.date.accessioned2018-03-28T21:42:30Z
dc.date.available2018-03-28T21:42:30Z
dc.identifier
dc.identifierPlos One. Public Library Of Science, v. 9, n. 2, p. - , 2014.
dc.identifier19326203
dc.identifier10.1371/journal.pone.0090087
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896351830&partnerID=40&md5=f065368ac54a5d18b33170b73f53da72
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86787
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86787
dc.identifier2-s2.0-84896351830
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1249327
dc.descriptionCurrent knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs. © 2014 Sierra-Garcia et al.
dc.description9
dc.description2
dc.description
dc.description
dc.descriptionIsmail, W., Gescher, J., Epoxy Coenzyme A Thioester pathways for degradation of aromatic compounds (2012) Appl Environ Microbiol, 78, pp. 5043-5051
dc.descriptionTorsvik, V., Goksoyr, J., Daae, F.L., High diversity in DNA of soil bacteria (1990) Applied and Environmental Microbiology, 56 (3), pp. 782-787
dc.descriptionTorsvik, V., Daae, F.L., Sandaa, R.-A., Ovreas, L., Novel techniques for analysing microbial diversity in natural and perturbed environments (1998) Journal of Biotechnology, 64 (1), pp. 53-62. , DOI 10.1016/S0168-1656(98)00103-5, PII S0168165698001035
dc.descriptionAmann, R.I., Ludwig, W., Schleifer, K.H., Phylogenetic Identification and in-Situ Detection of Individual Microbial-Cells without Cultivation (1995) Microbiological Reviews, 59, pp. 143-169
dc.descriptionKellenberger, E., Exploring the unknown - The silent revolution of microbiology (2001) Embo Reports, 2, pp. 5-7
dc.descriptionHead, I.M., Larter, S.R., Gray, N.D., Sherry, A., Adams, J.J., (2010) Hydrocarbon Degradation in Petroleum Reservoirs, pp. 3097-3109
dc.descriptionEyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S.N., El, F.S., Environmental genomics: Exploring the unmined richness of microbes to degrade xenobiotics (2004) Applied Microbiology and Biotechnology, 66 (2), pp. 123-130. , DOI 10.1007/s00253-004-1703-6
dc.descriptionHandelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.M., Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products (1998) Chemistry and Biology, 5 (10), pp. R245-R249
dc.descriptionIvanova, N., Tringe, S.G., Liolios, K., Liu, W.T., Morrison, N., A call for standardized classification of metagenome projects (2010) Environ Microbiol, 12, pp. 1803-1805
dc.descriptionVasconcellos, S.Pd., Angolini, C.F.F., García, I.N.S., Martins Dellagnezze, B., Silva, C.Cd., Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs (2010) Organic Geochemistry, 41, pp. 675-681
dc.descriptionZinder, S.H., Cardwell, S.C., Anguish, T., Methanogenesis in a thermophilic (58DegreesC) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen (1984) Applied and Environmental Microbiology, 47 (4), pp. 796-807
dc.descriptionDe Vasconcellos, S.P., Crespim, E., Da Cruz, G.F., Senatore, D.B., Simioni, K.C.M., Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin (2009) Organic Geochemistry, 40, pp. 574-588
dc.descriptionZerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Research, 18 (5), pp. 821-829. , http://www.genome.org/cgi/reprint/18/5/821, DOI 10.1101/gr.074492.107
dc.descriptionNoguchi, H., Park, J., Takagi, T., MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences (2006) Nucleic Acids Research, 34 (19), pp. 5623-5630. , DOI 10.1093/nar/gkl723
dc.descriptionZhu, W.H., Lomsadze, A., Borodovsky, M., Ab initio gene identification in metagenomic sequences (2010) Nucleic Acids Research, p. 38
dc.descriptionSalzberg, S.L., Deicher, A.L., Kasif, S., White, O., Microbial gene identification using interpolated Markov models (1998) Nucleic Acids Research, 26 (2), pp. 544-548. , DOI 10.1093/nar/26.2.544
dc.descriptionDelcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L., Improved microbial gene identification with GLIMMER (1999) Nucleic Acids Research, 27, pp. 4636-4641
dc.descriptionQuevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., Lopez, R., InterProScan: Protein domains identifier (2005) Nucleic Acids Research, 33 (WEB. SERV. ISS.), pp. W116-W120. , DOI 10.1093/nar/gki442
dc.descriptionTatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., Koonin, E.V., The COG database: New developments in phylogenetic classification of proteins from complete genomes (2001) Nucleic Acids Research, 29 (1), pp. 22-28
dc.descriptionLiu, X., Dong, Y., Zhang, J., Zhang, A., Wang, L., Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans NG80-2 (2009) Microbiology, 155, pp. 2078-2085
dc.descriptionRutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Artemis: Sequence visualization and annotation (2000) Bioinformatics, 16, pp. 944-945
dc.descriptionSuzek, B.E., Ermolaeva, M.D., Schreiber, M., Salzberg, S.L., A probabilistic method for identifying start codons in bacterial genomes (2001) Bioinformatics, 17 (12), pp. 1123-1130
dc.descriptionLowe, T.M., Eddy, S.R., tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence (1997) Nucleic Acids Research, 25 (5), pp. 955-964. , DOI 10.1093/nar/25.5.955
dc.descriptionCaspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases (2012) Nucleic Acids Research, 40, pp. D742-D753
dc.descriptionOgata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M., KEGG: Kyoto encyclopedia of genes and genomes (1999) Nucleic Acids Research, 27 (1), pp. 29-34. , DOI 10.1093/nar/27.1.29
dc.descriptionAziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., The RAST server: Rapid annotations using subsystems technology (2008) Bmc Genomics, p. 9
dc.descriptionKrogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L.L., Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes (2001) Journal of Molecular Biology, 305 (3), pp. 567-580. , DOI 10.1006/jmbi.2000.4315
dc.descriptionMcHardy, A.C., Martin, H.G., Tsirigos, A., Hugenholtz, P., Rigoutsos, I., Accurate phylogenetic classification of variable-length DNA fragments (2007) Nature Methods, 4 (1), pp. 63-72. , DOI 10.1038/nmeth976, PII NMETH976
dc.descriptionHarris, J.K., Kelley, S.T., Spiegelman, G.B., Pace, N.R., The genetic core of the universal ancestor (2003) Genome Research, 13 (3), pp. 407-412. , DOI 10.1101/gr.652803
dc.descriptionJain, R., Rivera, M.C., Lake, J.A., Horizontal gene transfer among genomes: The complexity hypothesis (1999) Proceedings of the National Academy of Sciences of the United States of America, 96 (7), pp. 3801-3806. , DOI 10.1073/pnas.96.7.3801
dc.descriptionThompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22 (22), pp. 4673-4680
dc.descriptionSaitou, N., Nei, M., The Neighbor-Joining Method - A New Method for Reconstructing Phylogenetic Trees (1987) Molecular Biology and Evolution, 4, pp. 406-425
dc.descriptionTamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods (2011) Molecular Biology and Evolution, 28, pp. 2731-2739
dc.descriptionPagani, I., Liolios, K., Jansson, J., Chen, I.M.A., Smirnova, T., The Genomes OnLine Database (GOLD) v.4: Status of genomic and metagenomic projects and their associated metadata (2012) Nucleic Acids Research, 40, pp. D571-D579
dc.descriptionUchiyama, T., Miyazaki, K., Functional metagenomics for enzyme discovery: Challenges to efficient screening (2009) Curr Opin Biotechnol, 20, pp. 616-622
dc.descriptionRabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K., Widdel, F., Reinhardt, R., The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 (2005) Archives of Microbiology, 183 (1), pp. 27-36. , DOI 10.1007/s00203-004-0742-9
dc.descriptionLopez, B.M.J., Carmona, M., Zamarro, M.T., Thiele, B., Boll, M., Fuchs, G., Garcia, J.L., Diaz, E., The bzd gene cluster, coding for anaerobic benzoate catabolism, in Azoarcus sp. strain CIB (2004) Journal of Bacteriology, 186 (17), pp. 5762-5774. , DOI 10.1128/JB.186.17.5762-5774.2004
dc.descriptionEgland, P.G., Pelletier, D.A., Dispensa, M., Gibson, J., Harwood, C.S., A cluster of bacterial genes for anaerobic benzene ring biodegradation (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (12), pp. 6484-6489. , DOI 10.1073/pnas.94.12.6484
dc.descriptionHaft, D.H., Selengut, J., Mongodin, E.F., Nelson, K.E., A guild of forty-five CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes (2005) PLoS Computational Biology Preprint, pp. e60
dc.descriptionZhang, J., Kasciukovic, T., White, M.F., The CRISPR Associated Protein Cas4 Is a 5' to 3' DNA Exonuclease with an Iron-Sulfur Cluster (2012) Plos One, p. 7
dc.descriptionSuenaga, H., Ohnuki, T., Miyazaki, K., Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds (2007) Environmental Microbiology, 9 (9), pp. 2289-2297. , DOI 10.1111/j.1462-2920.2007.01342.x
dc.descriptionSuenaga, H., Koyama, Y., Miyakoshi, M., Miyazaki, R., Yano, H., Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis (2009) ISME J, 3, pp. 1335-1348
dc.descriptionKunze, M., Zerlin, K.F., Retzlaff, A., Pohl, J.O., Schmidt, E., Degradation of chloroaromatics by Pseudomonas putida GJ31: Assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome (2009) Microbiology, 155, pp. 4069-4083
dc.descriptionVan Beilen, J.B., Funhoff, E.G., Alkane hydroxylases involved in microbial alkane degradation (2007) Appl Microbiol Biotechnol, 74, pp. 13-21
dc.descriptionVan Beilen, J.B., Funhoff, E.G., Van Loon, A., Just, A., Kaysser, L., Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases (2006) Appl Environ Microbiol, 72, pp. 59-65
dc.descriptionWiddel, F., Musat, F., Diversity and common principles in enzymatic activation of hydrocarbons (2010) Handbook of Hydrocarbon and Lipid Microbiology, , Timmis KN, editor
dc.descriptionDiaz, E., Ferrandez, A., Prieto, M.A., Garcia, J.L., Biodegradation of aromatic compounds by Escherichia coli (2001) Microbiology and Molecular Biology Reviews, 65 (4), pp. 523-569. , DOI 10.1128/MMBR.65.4.523-569.2001
dc.descriptionChakraborty, R., Coates, J.D., Anaerobic degradation of monoaromatic hydrocarbons (2004) Applied Microbiology and Biotechnology, 64 (4), pp. 437-446. , DOI 10.1007/s00253-003-1526-x
dc.descriptionSalinero, K.K., Keller, K., Feil, W.S., Feil, H., Trong, S., Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: Indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation (2009) BMC Genomics, 10, p. 351
dc.descriptionPieper, D.H., Martins, D.S.V.A.P., Golyshin, P.N., Genomic and mechanistic insights into the biodegradation of organic pollutants (2004) Current Opinion in Biotechnology, 15 (3), pp. 215-224. , DOI 10.1016/j.copbio.2004.03.008, PII S0958166904000515
dc.descriptionMarin, M., Pieper, D.H., Novel metal-binding site of Pseudomonas reinekei MT1 trans-dienelactone hydrolase (2009) Biochem Biophys Res Commun, 390, pp. 1345-1348
dc.descriptionPieper, D.H., Aerobic degradation of polychlorinated biphenyls (2005) Appl Microbiol Biotechnol, 67, pp. 170-191
dc.descriptionOppermann, U.C.T., Maser, E., Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions (2000) Toxicology, 144 (1-3), pp. 71-81. , DOI 10.1016/S0300-483X(99)00192-4, PII S0300483X99001924
dc.descriptionRojo, F., (2010) Enzymes for Aerobic Degradation of Alkanes, pp. 781-797
dc.descriptionIan Head, N.G., Aitken, C., Sherry, A., Jones, M., Larter, S., Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms (2010) Geophysical Research Abstracts, 12. , EGU General Assembly 2010
dc.descriptionBoll, M., Fuchs, G., Heider, J., Anaerobic oxidation of aromatic compounds and hydrocarbons (2002) Current Opinion in Chemical Biology, 6 (5), pp. 604-611. , DOI 10.1016/S1367-5931(02)00375-7
dc.descriptionBoll, M., Fuchs, G., Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172 (1995) European Journal of Biochemistry, 234 (3), pp. 921-933
dc.descriptionBoll, M., Laempe, D., Eisenreich, W., Bacher, A., Mittelberger, T., Heinze, J., Fuchs, G., Nonaromatic products from anoxic conversion of benzoyl-CoA with benzoyl-coA reductase and Cyclohexa-1,5-diene- 1-carbonyl-CoA hydratase (2000) Journal of Biological Chemistry, 275 (29), pp. 21889-21895. , DOI 10.1074/jbc.M001833200
dc.descriptionFuchs, G., Anaerobic metabolism of aromatic compounds (2008) Ann N Y Acad Sci, 1125, pp. 82-99
dc.descriptionCarmona, M., Zamarro, M.T., Blazquez, B., Durante-Rodriguez, G., Juarez, J.F., Anaerobic catabolism of aromatic compounds: A genetic and genomic view (2009) Microbiol Mol Biol Rev, 73, pp. 71-133
dc.descriptionWischgoll, S., Heintz, D., Peters, F., Erxleben, A., Sarnighausen, E., Reski, R., Van Dorsselaer, A., Boll, M., Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens (2005) Molecular Microbiology, 58 (5), pp. 1238-1252. , DOI 10.1111/j.1365-2958.2005.04909.x
dc.descriptionBains, J., Leon, R., Temke, K.G., Boulanger, M.J., Elucidating the reaction mechanism of the benzoate oxidation pathway encoded aldehyde dehydrogenase from Burkholderia xenovorans LB400 (2011) Protein Sci, 20, pp. 1048-1059
dc.descriptionGescher, J., Zaar, A., Mohamed, M., Schagger, H., Fuchs, G., Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii (2002) Journal of Bacteriology, 184 (22), pp. 6301-6315. , DOI 10.1128/JB.184.22.6301-6315.2002
dc.descriptionValderrama, J.A., Durante-Rodriguez, G., Blazquez, B., Garcia, J.L., Carmona, M., Bacterial degradation of benzoate: Cross-regulation between aerobic and anaerobic pathways (2012) J Biol Chem, 287, pp. 10494-10508
dc.descriptionBreinig, S., Schiltz, E., Fuchs, G., Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica (2000) Journal of Bacteriology, 182, pp. 5849-5863
dc.descriptionDiDonato Jr., R.J., Young, N.D., Butler, J.E., Chin, K.J., Hixson, K.K., Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene (2010) PLoS One, 5, pp. e14072
dc.descriptionKube, M., Beck, A., Meyerdierks, A., Amann, R., Reinhardt, R., Rabus, R., A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats (2005) Systematic and Applied Microbiology, 28 (4), pp. 287-294. , DOI 10.1016/j.syapm.2005.02.006, PII S0723202005000378
dc.descriptionFuchs, G., Boll, M., Heider, J., Microbial degradation of aromatic compounds - from one strategy to four (2011) Nat Rev Microbiol, 9, pp. 803-816
dc.descriptionFulthorpe, R.R., Top, E.M., (2010) Evolution of New Catabolic Functions Through Gene Assembly by Mobile Genetic Elements, pp. 1219-1233
dc.descriptionKimbara, K., Hashimoto, T., Fukuda, M., Koana, T., Takagi, M., Oishi, M., Yano, K., Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102 (1989) Journal of Bacteriology, 171 (5), pp. 2740-2747
dc.descriptionHaigler, B.E., Wallace, W.H., Spain, J.C., Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42 (1994) Applied and Environmental Microbiology, 60 (9), pp. 3466-3469
dc.descriptionFahy, A., McGenity, T.J., Timmis, K.N., Ball, A.S., Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters (2006) FEMS Microbiology Ecology, 58 (2), pp. 260-270. , DOI 10.1111/j.1574-6941.2006.00162.x
dc.descriptionHaigler, B.E., Pettigrew, C.A., Spain, J.C., Biodegradation of Mixtures of Substituted Benzenes by Pseudomonas Sp Strain-Js150 (1992) Applied and Environmental Microbiology, 58, pp. 2237-2244
dc.descriptionLaurie, A.D., Lloyd-Jones, G., The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism (1999) Journal of Bacteriology, 181 (2), pp. 531-540
dc.descriptionYuste, L., Corbella, M.E., Turiegano, M.J., Karlson, U., Puyet, A., Rojo, F., Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing (2000) FEMS Microbiology Ecology, 32 (1), pp. 69-75. , DOI 10.1016/S0168-6496(00)00015-5, PII S0168649600000155
dc.descriptionColeman, N.V., Mattes, T.E., Gossett, J.M., Spain, J.C., Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium (2002) Applied and Environmental Microbiology, 68 (6), pp. 2726-2730. , DOI 10.1128/AEM.68.6.2726-2730.2002
dc.descriptionParales, R.E., (2010) Hydrocarbon Degradation by Betaproteobacteria, pp. 1715-1724
dc.descriptionKrieger, C.J., Beller, H.R., Reinhard, M., Spormann, A.M., Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T (1999) Journal of Bacteriology, 181 (20), pp. 6403-6410
dc.descriptionShinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., Yurimoto, H., Kato, N., Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1 (2004) Applied and Environmental Microbiology, 70 (3), pp. 1385-1392. , DOI 10.1128/AEM.70.3.1385-1392.2004
dc.descriptionChakraborty, R., O'Connor, S.M., Chan, E., Coates, J.D., Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB (2005) Applied and Environmental Microbiology, 71 (12), pp. 8649-8655. , DOI 10.1128/AEM.71.12.8649-8655.2005
dc.descriptionCoates, J.B., Chakraborty, R., Lack, J.G., O'Connor, S.M., Cole, K.A., Bender, K.S., Achenbach, L.A., Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas (2001) Nature, 411 (6841), pp. 1039-1043. , DOI 10.1038/35082545
dc.descriptionVon Der Weid, I., Korenblum, E., Jurelevicius, D., Rosado, A.S., Dino, R., Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil (2008) Journal of Microbiology and Biotechnology, 18, pp. 5-14
dc.descriptionSilva, T.R., Verde, L.C.L., Santos Neto, E.V., Oliveira, V.M., Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields (2013) International Biodeterioration & Biodegradation, 81, pp. 57-70
dc.descriptionVerde, L.C.L., S, T., Dellagnezze, B.M., Santos Neto, E.Vd., De Oliveira, V.M., Diversity of Hydrocarbon-Related Catabolic Genes in Oil Samples from Potiguar Basin (RN, Brazil) (2013) Petroleum & Environmental Biotechnology, 4, p. 138
dc.descriptionSierra-Garcia, I.N., De Oliveira, V.M., (2013) Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs, pp. 47-72
dc.descriptionReorganizing the protein space at the Universal Protein Resource (UniProt) (2012) Nucleic Acids Research, 40, pp. D71-D75. , The UniProt Consortium
dc.languageen
dc.publisherPublic Library of Science
dc.relationPLoS ONE
dc.rightsaberto
dc.sourceScopus
dc.titleNew Hydrocarbon Degradation Pathways In The Microbial Metagenome From Brazilian Petroleum Reservoirs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución