dc.creator | Coluci V.R. | |
dc.creator | Martinez D.S.T. | |
dc.creator | Honorio J.G. | |
dc.creator | De Faria A.F. | |
dc.creator | Morales D.A. | |
dc.creator | Skaf M.S. | |
dc.creator | Alves O.L. | |
dc.creator | Umbuzeiro G.A. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:55:16Z | |
dc.date | 2015-11-26T14:37:53Z | |
dc.date | 2015-06-25T17:55:16Z | |
dc.date | 2015-11-26T14:37:53Z | |
dc.date.accessioned | 2018-03-28T21:42:28Z | |
dc.date.available | 2018-03-28T21:42:28Z | |
dc.identifier | | |
dc.identifier | Journal Of Physical Chemistry C. , v. 118, n. 4, p. 2187 - 2193, 2014. | |
dc.identifier | 19327447 | |
dc.identifier | 10.1021/jp409501g | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84893267595&partnerID=40&md5=4a5e99dc2abe9ce4e9837b0deed49b21 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86792 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86792 | |
dc.identifier | 2-s2.0-84893267595 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1249316 | |
dc.description | Graphene oxide (GO) is a very promising material because it is easy to process, water-soluble, and chemically versatile due to the presence of oxygenated groups on its surface. GO has been used in different areas such as electronics, biosensing, and environmental remediation. To design efficient materials, especially for biosensing and for remediating pollutants, the knowledge of surface noncovalent interaction and functionalization is crucial. Recently, it has been suggested revisions on the structural models of GO because the presence of highly oxidized polyaromatic carboxylated fragments (oxidative debris) on the GO surfaces. These debris are produced during acid treatments commonly employed in GO synthesis and purification. Here we applied chemical analysis, bioassays, and atomistic simulations to study the influence of oxidative debris on the noncovalent interaction of GO sheets with an important organic pollutant (e.g., 1-nitropyrene). GO samples without oxidative debris were found to be 75% more effective to adsorb 1-nitropyrene than samples with debris. Our results suggest that small (∼1 nm) oxidative debris are responsible for preventing adsorption sites on GO surfaces from being reached by potentially adsorbate molecules. © 2014 American Chemical Society. | |
dc.description | 118 | |
dc.description | 4 | |
dc.description | 2187 | |
dc.description | 2193 | |
dc.description | Jeong, H.Y., Kim, J.Y., Kim, J.W., Hwang, J.O., Kim, J.-E., Lee, J.Y., Yoon, T.H., Ruoff, R.S., Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications (2010) Nano Lett., 10, pp. 4381-4386 | |
dc.description | Robinson, J.T., Zalalutdinov, M., Baldwin, J.W., Snow, E.S., Wei, Z., Sheehan, P., Houston, B.H., Wafer-Scale Reduced Graphene Oxide Films for Nanomechanical Devices (2008) Nano Lett., 8, pp. 3441-3445 | |
dc.description | Ye, D., Moussa, S., Ferguson, J.D., Baski, A.A., El-Shall, M.S., Highly Efficient Electron Field Emission from Graphene Oxide Sheets Supported by Nickel Nanotip Arrays (2012) Nano Lett., 12, pp. 1265-1268 | |
dc.description | Zhang, L.L., Zhao, X., Stoller, M.D., Zhu, Y., Ji, H., Murali, S., Wu, Y., Ruoff, R.S., Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors (2012) Nano Lett., 12, pp. 1806-1812 | |
dc.description | Robinson, J.T., Perkins, F.K., Snow, E.S., Wei, Z., Sheehan, P.E., Reduced Graphene Oxide Molecular Sensors (2008) Nano Lett., 8, pp. 3137-3140 | |
dc.description | Chou, S.S., De, M., Luo, J., Rotello, V.M., Huang, J., Dravid, V.P., Nanoscale Graphene Oxide (nGO) as Artificial Receptors: Implications for Biomolecular Interactions and Sensing (2012) J. Am. Chem. Soc., 134, pp. 16725-16733 | |
dc.description | Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S., Graphene Oxide as a Matrix for Enzyme Immobilization (2010) Langmuir, 26, pp. 6083-6085 | |
dc.description | Zhang, Y., Nayak, T.R., Hong, H., Cai, W., Graphene: A versatile nanoplatform for biomedical applications (2012) Nanoscale, 4, pp. 3833-3842 | |
dc.description | Liu, F., Chung, S., Oh, G., Seo, T.S., Three-Dimensional Graphene Oxide Nanostructure for Fast and Efficient Water-Soluble Dye Removal (2012) ACS Appl. Mater. Interfaces, 4, pp. 922-927 | |
dc.description | Zhang, F., Zheng, B., Zhang, J., Huang, X., Liu, H., Guo, S., Zhang, J., Horseradish Peroxidase Immobilized on Graphene Oxide: Physical Properties and Applications in Phenolic Compound Removal (2010) J. Phys. Chem. C, 114, pp. 8469-8473 | |
dc.description | Hu, X., Mu, L., Wen, J., Zhou, Q., Immobilized smart {RNA} on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water (2012) J. Hazard. Mater., 213-214, pp. 387-392 | |
dc.description | Zhao, G., Li, J., Ren, X., Chen, C., Wang, X., Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management (2011) Environ. Sci. Technol., 45, pp. 10454-10462 | |
dc.description | Hu, X., Zhou, Q., Health and Ecosystem Risks of Graphene (2013) Chem. Rev., 113, pp. 3815-3835 | |
dc.description | Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The Chemistry of Graphene Oxide (2010) Chem. Soc. Rev., 39, pp. 228-240 | |
dc.description | Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R., The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-Like Sheets (2011) Angew. Chem., Int. Ed., 50, pp. 3173-3177 | |
dc.description | Whitby, R.L., Korobeinyk, A., Glevatska, K.V., Morphological Changes and Covalent Reactivity Assessment of Single-Layer Graphene Oxides under Carboxylic Group-Targeted Chemistry (2011) Carbon, 49, pp. 722-725 | |
dc.description | Thomas, H.R., Day, S.P., Woodruff, W.E., Valls, C., Young, R.J., Kinloch, I.A., Morley, G.W., Rourke, J.P., Deoxygenation of Graphene Oxide: Reduction or Cleaning? (2013) Chem. Mater., 25, pp. 3580-3588 | |
dc.description | Faria, A.F., Martinez, D.S.T., Moraes, A.C.M., Maia Da Costa, M.E.H., Barros, E.B., Souza Filho, A.G., Paula, A.J., Alves, O.L., Unveiling the Role of Oxidation Debris on the Surface Chemistry of Graphene through the Anchoring of Ag Nanoparticles (2012) Chem. Mater., 24, pp. 4080-4087 | |
dc.description | Li, X., Yang, X., Jia, L., Ma, X., Zhu, L., Carbonaceous Debris That Resided in Graphene Oxide/Reduced Graphene Oxide Profoundly Affect Their Electrochemical Behaviors (2012) Electrochem. Commun., 23, pp. 94-97 | |
dc.description | Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., Shaffer, M., Removal of Oxidation Debris from Multi-Walled Carbon Nanotubes (2007) Chem. Commun., pp. 513-515 | |
dc.description | Wang, Z., Korobeinyk, A., Whitby, R.L., Meikle, S.T., Mikhalovsky, S.V., Acquah, S.F., Kroto, H.W., Direct Confirmation That Carbon Nanotubes Still React Covalently after Removal of Acid-Oxidative Lattice Fragments (2010) Carbon, 48, pp. 916-918 | |
dc.description | Stefani, D., Paula, A.J., Vaz, B.G., Silva, R.A., Andrade, N.F., Justo, G.Z., Ferreira, C.V., Alves, O.L., Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes (2011) J. Hazard. Mater., 189, pp. 391-396 | |
dc.description | Hummers, W.S., Offeman, R.E., Preparation of Graphitic Oxide (1958) J. Am. Chem. Soc., 80, pp. 1339-1339 | |
dc.description | Mortelmans, K., Zeiger, E., The Ames Salmonella/Microsome Mutagenicity Assay (2000) Mutat. Res., Fundam. Mol. Mech. Mutagen., 455, pp. 29-60 | |
dc.description | De Aragão Umbuzeiro, G., Franco, A., Magalhẽs, D., De Castro, F.J.V., Kummrow, F., Rech, C.M., Rothschild Franco De Carvalho, L., De Castro Vasconcellos, P., A Preliminary Characterization of the Mutagenicity of Atmospheric Particulate Matter Collected during Sugar Cane Harvesting Using the Salmonella/Microsome Microsuspension Assay (2008) Environ. Mol. Mutagen., 49, pp. 249-255 | |
dc.description | Monge, M.E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D.J., George, C., Light Changes the Atmospheric Reactivity of Soot (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 6605-6609 | |
dc.description | Benbrahim-Tallaa, L., Baan, R.A., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Guha, N., Workin, I.A.R.C.M., Carcinogenicity of Diesel-Engine and Gasoline-Engine Exhausts and Some Nitroarenes (2012) Lancet Oncol., 13, pp. 663-664 | |
dc.description | Umbuzeiro, G.A., Coluci, V.R., Honorio, J.G., Giro, R., Morales, D.A., Lage, A.S.G., Mazzei, J.L., Stefani, D., Understanding the Interaction of Multi-Walled Carbon Nanotubes with Mutagenic Organic Pollutants Using Computational Modeling and Biological Experiments (2011) TrAC, Trends Anal. Chem., 30, pp. 437-446 | |
dc.description | Doak, S., Manshian, B., Jenkins, G., Singh, N., In Vitro Genotoxicity Testing Strategy for Nanomaterials and the Adaptation of Current {OECD} Guidelines (2012) Mutat. Res., Genet. Toxicol. Environ. Mutagen., 745, pp. 104-111 | |
dc.description | Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19 | |
dc.description | http://lammps.sandia.gov, LAMMPS Molecular Dynamics SimulatorVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A., ReaxFF: A Reactive Force Field for Hydrocarbons (2001) J. Phys. Chem. A, 105, pp. 9396-9409 | |
dc.description | Van Duin, A.C.T., Bryantsev, V.S., Diallo, M.S., Goddard, W.A., Rahaman, O., Doren, D.J., Raymand, D., Hermansson, K., Development and Validation of a ReaxFF Reactive Force Field for Cu Cation/Water Interactions and Copper Metal/Metal Oxide/Metal Hydroxide Condensed Phases (2010) J. Phys. Chem. A, 114, pp. 9507-9514 | |
dc.description | Huang, L., Joshi, K.L., Van Duin, A.C.T., Bandosz, T.J., Gubbins, K.E., ReaxFF Molecular Dynamics Simulation of Thermal Stability of a Cu 3(BTC)2 Metal-Organic Framework (2012) Phys. Chem. Chem. Phys., 14, pp. 11327-11332 | |
dc.description | Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M., Shenoy, V.B., Structural Evolution during the Reduction of Chemically Derived Graphene Oxide (2010) Nat. Chem., 2, pp. 581-587 | |
dc.description | Abolfath, R.M., Cho, K., Computational Studies for Reduced Graphene Oxide in Hydrogen-Rich Environment (2012) J. Phys. Chem. A, 116, pp. 1820-1827 | |
dc.description | Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., Shenoy, V.B., Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties (2010) ACS Nano, 4, pp. 2300-2306 | |
dc.description | Compton, O.C., Cranford, S.W., Putz, K.W., An, Z., Brinson, L.C., Buehler, M.J., Nguyen, S.T., Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding (2012) ACS Nano, 6, pp. 2008-2019 | |
dc.description | Abolfath, R.M., Van Duin, A.C.T., Brabec, T., Reactive Molecular Dynamics Study on the First Steps of DNA Damage by Free Hydroxyl Radicals (2011) J. Phys. Chem. A, 115, pp. 11045-11049 | |
dc.description | Akhavan, O., Ghaderi, E., Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria (2010) ACS Nano, 4, pp. 5731-5736 | |
dc.description | Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C., Graphene-Based Antibacterial Paper (2010) ACS Nano, 4, pp. 4317-4323 | |
dc.description | Ruiz, O.N., Fernando, K.A.S., Wang, B., Brown, N.A., Luo, P.G., McNamara, N.D., Vangsness, M., Bunker, C.E., Graphene Oxide: A Nonspecific Enhancer of Cellular Growth (2011) ACS Nano, 5, pp. 8100-8107 | |
dc.description | Wang, D., Wang, G., Zhang, G., Xu, X., Yang, F., Using Graphene Oxide to Enhance the Activity of Anammox Bacteria for Nitrogen Removal (2013) Bioresour. Technol., 131, pp. 527-530 | |
dc.description | McAllister, M.J., Li, J.-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Prud'Homme, R.K., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite (2007) Chem. Mater., 19, p. 4396 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Physical Chemistry C | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Noncovalent Interaction With Graphene Oxide: The Crucial Role Of Oxidative Debris | |
dc.type | Artículos de revistas | |