dc.creatorKiralj R.
dc.creatorFerreira M.M.C.
dc.creatorDonate P.M.
dc.creatorDa Silva R.
dc.creatorAlbuquerque S.
dc.date2007
dc.date2015-06-30T18:49:26Z
dc.date2015-11-26T14:36:58Z
dc.date2015-06-30T18:49:26Z
dc.date2015-11-26T14:36:58Z
dc.date.accessioned2018-03-28T21:41:06Z
dc.date.available2018-03-28T21:41:06Z
dc.identifier
dc.identifierJournal Of Physical Chemistry A. , v. 111, n. 28, p. 6316 - 6333, 2007.
dc.identifier10895639
dc.identifier10.1021/jp066746m
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34547499035&partnerID=40&md5=99d3568a2836c46e7751771a53ce6bbd
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104952
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104952
dc.identifier2-s2.0-34547499035
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248959
dc.descriptionβ-(3,4-Methylenedioxybenzyl)-γ-butyrolactone (MDBL) and (-)-hinokinin (HK) were obtained by partial synthesis and characterized by 1H NMR and computational methods (conformational analysis, molecular modeling, structural data mining and chemometrics). Three conformers were detected for MDBL and nine were found for HK. The energy differences are around 1 and 2 kcal mol-1 and rotation barriers are less than 3 and 5 kcal mol-1 for MDBL and HK conformers, respectively. The geometries of these conformers, obtained from semiempirical PM3 and density functional theory (DFT) B3LYP 6-3IG** calculations agree satisfactorily with 1H NMR data (vicinal proton-proton coupling constants) and structures retrieved from the Cambridge Structural Database (torsion angles). DFT combined with some variants of the Haasnoot-de Leeuuw-Altona equations gives the best predictions for the coupling constants. The molecular conformation of MDBL, of HK, and of related systems depends not only on intramolecular interactions but also on crystal packing forces and solvent-solute interactions, in particular hydrogen bonds and polar interactions. Hydration favors more stable HK conformers, which can be important for their behavior in chemical and biological systems. © 2007 American Chemical Society.
dc.description111
dc.description28
dc.description6316
dc.description6333
dc.descriptionMcRae, W.D., Towers, G.H.N., Biological Activities of Lignans (1984) Phytochemistry, 23, pp. 1207-1220
dc.descriptionAyres, D.C., Loike, J.D., (1990) Chemistry and Pharmacology of Natural Products: Lignans
dc.descriptionChemical, Biological and Clinical Properties, , Cambridge University Press: New York
dc.descriptionWard, R.S., Lignans, Neolignans, and Related Compounds (1993) Nat. Prod. Rep, 10, pp. 1-28
dc.descriptionWard, R.S., Lignans, Neolignans, and Related Compounds (1995) Nat. Prod. Rep, 12, pp. 183-205
dc.descriptionWard, R.S., Lignans, Neolignans, and Related Compounds (1997) Nat. Prod.-Rep, 14, pp. 43-74
dc.descriptionWard, R.S., Lignans, Neolignans, and Related Compounds (1999) Nat. Prod. Rep, 16, pp. 75-96
dc.descriptionMann, J., Davidson, R.S., Hobbs, J.B., Banthorpe, D.V., Harborne, J.B., (1994) Natural Products: Their Chemistry and Biological Significance, , Longman: Essex, U.K
dc.descriptionBastos, J.K., Albuquerque, S., Silva, M.L.A., Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo (1999) Planta Med, 65, pp. 541-544
dc.descriptionMoss, G.P., Nomenclature of Lignans and Neolignans (IUPAC Recommendations 2000) (2000) Pure Appl. Chem, 72, pp. 1493-1523
dc.descriptionBruno, I.J., Cole, J.C., Kessler, M., Luo, J., Motherwell, W.D.S., Purkis, L.H., Smith, B.R., Taylor, R., Retrieval of Crystallographically- Derived Molecular Geometry Information (2004) J. Chem. Inf. Comput. Sci, 44, pp. 2133-2144
dc.descriptionAllen, F.H., Harris, S.E., Taylor, R., Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques (1996) J. Comput.-Aided Mol. Des, 10, pp. 247-254
dc.descriptionBoehm, H.-J., Klebe, G., What can we learn from molecular recognition in protein-ligand complexes for the design of new drugs? (1996) Angew. Chem., Int. Ed. Engl, 35, pp. 2588-2614
dc.descriptionBürgi, H.B., Structure Correlation and Chemistry (1998) Acta Crystallogr. A, 54, pp. 873-885
dc.descriptionAllen, F.H., The Development, Status and Scientific Impact of Crystallographical Databases (1998) Acta Crystallogr. A, 54, pp. 758-771
dc.descriptionRaithby, P. R.
dc.descriptionShields, G. P.
dc.descriptionAllen, F. H. Conformational Analysis of Macrocyclic Ether Ligands. II. 1,4,7,10,13-Pentaoxacyclopentadecane and 1,4,7,10,13-Pentathiacyclopentadecane. Acta Crystallogr. B 1997, 53, 476-489Munro, O.Q., Mariah, L., Conformational analysis: Crystallographic, molecular mechanics and quantum chemical studies of C-H⋯ •O hydrogen bonding in flexible bis(nosylate) derivatives of catechol (2004) Acta Crystallogr. B, 60, pp. 598-608
dc.descriptionBalaceo, G.A., Desktop Calculator for the Karplus Equation (1996) J. Chem. Inf. Comput. Sci, 36, pp. 885-887
dc.descriptionLarue, L., Gharbi-Benarous, J., Archer, F., Azerad, R., Girault, J.-P., Conformational study in water by NMR and Molecular Modeling of Cyclic Glutamic Acid Analogues as Probes of Vitamin K Dependent Carboxylase (1996) J. Chem. Inf. Comput. Sci, 36, pp. 717-725
dc.descriptionGrdadolnik, S. G.
dc.descriptionTrebše, P.
dc.descriptionKočevar, M.
dc.descriptionSolmajer, T. Structural Investigation of 5-Hydrazxono-5,6,7,8-tetrahydro-2/7-1 -benzopyran-2-ones and 5,6,7,8-Tetrahydroquinoline-2,5(1H)-diones. J. Chem. Inf. Comput. Sci. 1997, 37, 489-494Navarro-Vázquez, A.
dc.descriptionCobas, J. C.
dc.descriptionSardina, F. C. A Graphical Tool for the Prediction of Vicinal Proton-Proton 3JHH Coupling Constants. J. Chem. Inf. Comput. Sci. 2004, 44, 1680-1685Allen, F.H., The Cambridge Structural Database: A quarter of a million crystal structures and rising (2002) Acta Crystallogr. B, 58, pp. 380-388
dc.descriptionFey, N., Harris, S.E., Harvey, J.N., Orpen, A.G., Adding Value to Crystallographically-Derived Knowledge Bases (2006) J. Chem. Inf. Comput. Sci, 46, pp. 912-929
dc.descriptionKiralj, R., Ferreira, M.M.C., Predicting Bond Lengths in Planar Benzenoid Polycyclic Aromatic Hydrocarbons: A Chemometric Approach (2002) J. Chem. Inf. Comput. Sci, 42, pp. 508-523
dc.descriptionKiralj, R., Ferrreira, M.M.C., On Heteroaromaticity of Nucleobases. Bond Lengths as Multidimensional Phenomena (2003) J. Chem. Inf. Comput. Sci, 43, pp. 787-809
dc.descriptionKrygowski, T.M., Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of π-Electron Systems (1993) J. Chem. Inf. Comput. Sci, 33, pp. 70-78
dc.descriptionHarris, P.E., Orpen, A.G., Bruno, I.J., Taylor, R., Factors Affecting d-Block Metal-Ligand Bond Lengths: Toward an Automated Library of Molecular Geometry for Metal Complexes (2005) J. Chem. Inf. Mod, 45, pp. 1727-1748
dc.descriptionKämper, A., Apostolakis, J., Rarey, M., Marian, C.M., Lengauer, T., Fully Automated Flexible Docking of Ligands into Flexible Synthetic Receptor Using Forward and Inverse Docking Strategies (2006) J. Chem. Inf. Mod, 46, pp. 903-911
dc.descriptionKlebe, G., Mietzner, T., A fast and efficient method to generate biologically relevant conformations (1994) J. Comput.-Aided Mol. Des, 8, pp. 583-606
dc.descriptionFeuston, M.P., Miller, M.D., Culberson, J.C., Nachbar, R.B., Kearsley, S.K., Comparison of Knowledge-Based and Distance Geometry Approaches for Generation of Molecular Conformations (2001) J. Chem. Inf. Comput. Sci, 41, pp. 754-763
dc.descriptionJones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., Development of validation of a genetic algorithm for flexible docking (1997) J. Mol. Biol, 267, pp. 727-748
dc.descriptionRarey, M., Kramer, B., Lengauer, T., Klebe, G., A fast flexible docking method using an incremental construction algorithm (1996) J. Mol. Biol, 261, pp. 470-489
dc.descriptionLemmen, C., Lengauer, T., Time-efficient flexible superposition of medium-sized molecules (1997) J. Comput.-Aided Mol. Des, 11, pp. 357-368
dc.descriptionStewart, J.J.P., Optimization of Parameters for Semiempirical Methods. 1. Methods (1989) J. Comput. Chem, 10, pp. 209-220
dc.descriptionZiegler, T., Approximate Density Functional Theory as a Practical Tool In Molecular Energetics and Dynamics (1991) Chem. Rev, 91, pp. 651-667
dc.descriptionBecke, A.D., Density-Functional Thermochemistry. 3. The Role of Exact Exchange (1993) J. Chem. Phys, 98, pp. 5648-5652
dc.descriptionLee, C.T., Yang, W.T., Parr, R.G., Development of the ColleSalvetti Correlation-Energy Formula Into A Functional Of The Electron Density (1988) Phys. Rev. B, 37, pp. 785-789
dc.description(2001) Titan 1.0.8, , Wavefunction, Inc, Irvine, CA
dc.description(2000) WebLab ViewerPro 4.0, , Accelrys, Inc, Burlington, MA
dc.description(2000) Chem3D Ultra 6.0, , CambridgeSoft.Com: Cambridge, MA
dc.description(2001) Pirouette 3.01, , Infometrix, Inc, Woodinville, WA
dc.descriptionMatlab version 6.5.0.196271 Release 13.01. Mathworks, Inc, Natick, MA, 2003January, Update of the (2005) Cambridge Structural Database 5.27, , Cambridge Structural Data Centre, University of Cambridge: Cambridge, U.K, November
dc.descriptionBruno, I.J., Cole, J.C., Edgington, P.R., Kessler, M., Macrae, C.F., McCabe, P., Pearson, J., Taylor, R., New software for searching the Cambridge Structural Database and visualizing crystal structures (2002) Acta Crystallogr. B, 58, pp. 389-397
dc.descriptionConQuest 1.8: Camridge Structural Data Centre. University of Cambridge: Cambridge. U.K., 2005Mercury 1.4.1: Cambridge Structural Data Centre, University of Cambridge: Cambridge. U.K., 2005Vista 2.1c
dc.descriptionCambridge Structural Data Centre. University of Cambridge: Cambridge, U.K., 2005Spek, T., PLATON-A Multipurpose Crystallography Tool (1990) Acta Crystallogr. A, 46, pp. C34
dc.descriptionFarrugia, L.J., (2005) Platon for Windows, , University of Glasgow
dc.descriptionMartens, H., Naes, T., (1989) Multivariate Calibration, , 2nd ed, Wiley: New York, NY
dc.descriptionBeebe, K.R., Pell, R., Sheasholtz, M.B., (1998) Chemometries: A practical guide, , Wiley: New York
dc.descriptionFerreira, M.M.C., Multivariate QSAR (2002) J. Braz. Chem. Soc, 13, pp. 742-753
dc.descriptionDrew, M.G.B., Harrison, R.J., Mann, J., Tench, A.J., Young, R.J., Photoinduced addition of methanol to 5(S)-5-triisopropylsiloxymethyl-N-boc- dihydropyrrole-2(5H)-one: A new route to 4(S), 5(S)-disubstituted pyrrolidin-2-ones (1999) Tetrahedron, 55, pp. 1163-1172
dc.descriptionKuehne, M.E., Bornmann, W.G., Parsons, W.H., Spitzer, T.D., Blount, J.F., Zubieta, J., Total syntheses of (±)-cephalotaxine and (±)-8-oxocephalotaxine (1988) J. Org. Chem, 53, pp. 3439-3450
dc.descriptionSyu Jr., W., Don, M.-J., Lee, G.-H., Sun, C.-M., Cytotoxic and Novel Compounds from Solanum indicum (2001) J. Nat. Prod, 64, pp. 1232-1233
dc.descriptionCremer, D., Pople, J.A., General definition of ring puckering coordinates (1975) J. Am. Chem. Soc, 97, pp. 1354-1358
dc.descriptionKiralj, R., Ferreira, M.M.C., Combined Computational and Chemometric Study of 1H-Indole-3-Acetic Acid (2003) Int. J. Quantum Chem, 95, pp. 237-251
dc.descriptionSilva, M.C., Kiralj, R., Ferreira, M.M.C., Estudo Teórico da Interação Existente Entre a Artemisinina e Heme (2007) Quim. Nova, 30, pp. 25-31
dc.descriptionStenutz, R., Program for Calculation of Vicinal proton-proton coupling constants, , http://www.spectroscopynow.com/FCKeditor/UserFiles/ File/specNOW/HTML%20files/proton-proton2.htm, last accessed on 21 March, 2007
dc.descriptionHaasnoot, C.A.G., DeLeeuw, F.A.A.M., Altona, C., The relationship between proton-proton NMR coupling constants and substituent' electronegativities. 1. An empirical generalization of the Karplus equation (1980) Tetrahedron, 36, pp. 2783-2792
dc.descriptionAltona, C., Vicinal Coupling Constants & Conformation of Biomolecules (1996) Encyclopedia of Nuclear Magnetic Resonance, 8, pp. 4909-4925. , Grant. D. M, Harris, R. H, Eds, J. Wiley & Sons Ltd, Chichester, U.K
dc.descriptionLandais, Y., Robin, J.P., Lebrun, A., Ruthenium dioxide in fluoro acid medium. 1. A new agent in the biaryl oxidative coupling. Application to the synthesis of non phenolic bisbenzocyclooctadiene lignan lactones (1991) Tetrahedron, 47, pp. 3787-3804
dc.descriptionLopez, J.C., Alonso, J.L., Cervellati, R., Esposti, A.D., Lister, D.G., Palmieri, P., Conformational and Ring Inversion in γ-Butyrolactone. Part 1 -Microwave Spectrum (1990) J. Chem. Soc Faraday Trans, 86, pp. 453-458
dc.descriptionEsposti, D.D., Alonso, J.L., Cervellati, R., Lister, D.G., Lopez, J.C., Palmieri, P., Conformational and Ring Inversion in γ-Butyrolactone. Part 2-Ab initio and Flexible Model Computations (1990) J. Chem. Soc Faraday Trans, 86, pp. 459-466
dc.descriptionMasia, M., Rey, R., Computational Study of γ-Butyrolactone and Li+/γ-butyrolactone in Gas and Liquid Phases (2004) J. Phys. Chem. B, 108, pp. 17992-18002
dc.descriptionCharro, M.E., Alonso, J.L., Barriers to Internal Rotation in β-Methyl-γ-Butyrolactone, 3-Methylcyclopentanone, and γ-Valerolactone from Fourier Transform Microwave Spectroscopy (1996) J. Mol. Spectrosc, 176, pp. 251-257
dc.descriptionLopez, J.C., Alonso, J.L., Pelaez, F.J., The Microwave Spectrum of α-Methyl-γ-butyrolactone (1988) J. Mol. Spectrosc, 131, pp. 9-20
dc.descriptionAakeroy, C.B., Seddon, K.R., The Hydrogen Bond and Crystal Engineering (1993) Chem. Soc. Rev, 22, pp. 397-404
dc.descriptionHatu, T., Sato, S., Tamura, C., (E)-4-(2-hydroxyiminocyclopentylmethyl)- phenylacetic acid (1986) Acta Crystallogr. C, 42, pp. 452-454
dc.descriptionCaminati, W., Damiani, D., Corbelli, G., Velino, B., Bock, C.W., Microwave-spectrum and ab initio calculations of ethylbenzene. Potential energy surface of the ethyl group torsion (1991) Mol. Phys, 74, pp. 885-895
dc.descriptionEmsley, J.W., DeLuca, G., Celebre, G., Longeri, M., The conformation of the aromatic rings rleative to the alkyl chain in 4-n-pentyl4′- cyanobiphenyl (1996) Liquid Cryst, 20, pp. 569-575
dc.descriptionCinacchi, G., Prampolini, G., DFT Study of the Torsional Potential in Ethylbenzene and Ethyxybenzene: The Smallest Prototypes of Alkyland Alkoxy-Aryl Mesogens (2003) J. Phys. Chem. A, 107, pp. 5228-5232
dc.descriptionMaté, B., Suenram, R.D., Lugez, C., Microwave studies of three alkylbenzenes: Ethyl, n-propyl, and n-butylbenzenes (2000) J. Chem. Phys, 113, pp. 192-199
dc.descriptionTong, X., Ford, M.S., Dessent, C.E.H., Müller-Dethlefs, K., The effect of conformation on the ionization energetics of n-butylbenzene. I. A threshold ionization study (2003) J. Chem. Phys, 119, pp. 12908-12913
dc.descriptionFord, M.S., Tong, X., Dessent, C.E.H., Müller-Dethlefs, K., The effect of conformation on the ionization energetics of n-butylbenzene. I. A zero electron kinetic energy photoelectron spectroscopy study with partial rotational resolution (2003) J. Chem. Phys, 119, pp. 12914-12920
dc.descriptionCampanelli, A.R., Ramondo, F., Domenicano, A., Hargittai, I., Molecular Structure and Conformation of tert-Butylbezenes: A Concerted Study by Gas-Phase Electron Diffraction and Theoretical Calculations (1994) J. Phys. Chem, 98, pp. 11046-11052
dc.descriptionAnastasakos, L., Wildman, T.A., The effect of internal rotation on the methyl CH-stretching overtone spectra of toluene and the xylenes (1993) J. Chem. Phys, 99, pp. 9453-9459
dc.descriptionChelli, R., Gervasio, F.L., Procacci, P., Schettino, V., Stacking and T-shape Competition in Aromatic-Aromatic Amino Acid Interactions (2002) J. Am. Chem. Soc, 124, pp. 6133-6143
dc.descriptionMcGaughey, G.B., Gagnés, M., Rappé, A.K., π-Stacking Interactions (1998) J. Biol. Chem, 273, pp. 15458-15463
dc.descriptionAravinda, S., Shamala, N., Das, C., Srivanjini, A., Karle, I.L., Balaram, P., Aromatic-Aromatic Interactions in Crystal Structures of Helical Peptide Scaffolds Containing Projecting Phenylalanine Residues (2003) J. Am. Chem. Soc, 125, pp. 5308-5315
dc.descriptionSony, S.M.M., Ponnuswamy, M.N., Nature of π-interactions in nitrogen-containing heterocyclic systems: A structural database analysis (2006) Cryst. Growth Des, 6, pp. 736-742
dc.descriptionHonda, T., Kimura, N., Sato, S., Kato, D., Tominaga, H., Chiral Synthesis of Lignan Lactones, (-)-Hinokinin, (-)-Deoxypodorhizone, (-)Isobalactone and (-)-Savinin by Means of Enantioselective Deprotonation (1994) J. Chem. Soc., Perkin Trans, 1, pp. 1043-1046
dc.descriptionBode, J.W., Doyle, M.P., Protopopova, M.N., Zhou, Q.-L., Intramolecular Regioselective Insertion into Unactivated Prochiral Carbon-Hydrogen Bonds with Diazoacetates of Primary Alcohols Catalyzed by Chiral Dirhodium(II) Carboxamidates. Highly Enantioselective Total Synthesis of Natural Lignan Lactones (1996) J. Org. Chem, 61, pp. 9146-9155
dc.descriptionSakakibara, N., Suzuki, S., Umezawa, T., Shimada, M., Biosynthesis of yatein in Anthriscus sylvestris (2003) Org. Biomol. Chem, 1, pp. 2474-2484
dc.descriptionTakekawa, Y., Shishido, K., Fragmentation Reactions of Optically Active Trisubstituted Cyclopropylcarbinyl Radicals (2001) J. Org. Chem, 66, pp. 8490-8503
dc.descriptionItoh, T., Chika, J.-I., Takagi, Y., Nishiyama, S., An Efficient Enantioselective Total Synthesis of Antitumor Lignans: Synthesis of Enantiomerically Pure 4-Hydroxyalkanenitriles via an Enzymatic Reaction (1993) J. Org. Chem, 58, pp. 5717-5723
dc.descriptionBrinksma, J., van der Deen, H., van Oeveren, A., Feringa, B.L., Enantioselective synthesis of benzylbutyrolactones from 5-hydroxyfuran-2(5H)- one. New chiral synthons for dibenzylbutyrolactone lignans by a chemoenzymatic route (1998) J. Chem. Soc., Perkin Trans, 1, pp. 4159-4163
dc.descriptionVanderlei, J.M.L., Coelho, F., Almeida, W.P., A Simple and Stereoselective Synthesis of (+)-β-Piperonyl-γ-butyrolactone (1998) Synth. Commun, 28, pp. 3047-3055
dc.descriptionSrikrishna, A., Danieldoss, S., Radical Cyclisation Based Approach to Lignans. Synthesis of 4-Arylmethyldihydrofuran-2-ones (2001) Synth. Commun, 31, pp. 2357-2364
dc.descriptionMorimoto, T., Nagai, H., Achiwa, K., Lipase-Catalyzed Esterification of a (±)-2,3-Di(arylmethyl)-1,4-butanediol and Its Application to the Synthesis of (SgS)-(+)-Hinokinin (2005) Synth. Commun, 35, pp. 857-865
dc.descriptionSouza, V.A., Silva, R., Pereira, A.C., Royo, V.A., Saraiva, J., Montanheiro, M., Souza, G.H.B., Silva, M.L.A., Trypanocidal activity of (-)-cubebin derivatives against free amastigote forms of Trypanosoma cruzi (2005) Bioorg. Med. Chem. Lett, 15, pp. 303-307
dc.descriptionRehnberg, N., Magnusson, G., General conjugate-addition method for the synthesis of enantiomerically pure lignans. Total synthesis of (-)and (+)-burseran, (-)-dehydroxycubebin. (-)-trichostin, (-)-cubebin, (-)5″-methoxyhinokinin, and (-)-hinokinin (1990) J. Org. Chem, 55, pp. 4340-4349
dc.descriptionBelletire, J.L., Fry, D.F., Oxidative Coupling of Carboxylic Acid Dianions: The Total Synthesis of (±)-Hinokinin and (±)-Fomentaric Acid (1987) J. Org. Chem, 52, pp. 2549-2555
dc.descriptionHeleno, V.C.G., Silva, R., Pedersoli, S., Albuquerque, S., Bastos, J.K., Silva, M.L.A., Donate, P.M., Lopes, J.L.C., Detailed 1H and 13C NMR structural assignment of three biologically active lignan lactones (2005) Spectrochim. Acta A, 63, pp. 234-239
dc.descriptionVaz, E.
dc.descriptionFernández, I.
dc.descriptionMuñoz, L.
dc.descriptionLlor, J. Conformational Equilibria of 7-Benzyl-2-iodo-9-oxa-7-azabicyclo[4.3.0]nonan-8-one in Solution. Correlations between Conformational Distribution and Solvent Solvatochromic Parameters. J. Org. Chem. 2006, 71, 2558-2564Tvaroška, I., Taravel, F.R., Utille, J.P., Carver, J.P., Quantum mechanical and NMR spectroscopy studies on the conformations of the hydroxymethyl and methoxymethyl groups in aldohexosides (2002) Carbohvdr. Res, 337, pp. 353-367
dc.descriptionHöfinger, S., Zerbetto, F., The Free Energy of Nanobubbles in Organic Liquids (2003) J. Phys. Chem. A, 107, pp. 11253-11257
dc.descriptionGonçalves, P.F.B., Stassen, H., Free Energy of Solvation from Molecular Dynamics Simulations for Low Dielectric Solvents (2003) J. Comput. Chem, 24, pp. 1758-1765
dc.descriptionHippler, M. Quantum-chemical study of CHCl3-SO22 association. J. Chem. Phys. 2005, 123, 204311.1-204311.11Chung, S., Hippler, M., Infrared spectroscopy of hydrogen-bonded CHCl 3-SO2 in the gas phase (2006) J. Chem. Phys, 124, pp. 214316.1-214316.7
dc.descriptionRibeiro-Claro, P.J.A., Vaz, P.D., Towards the understanding of the spectroscopic behaviour of the C-H oscillator in C-H⋯O hydrogen bonds: The effect of solvent polarity (2004) Chem. Phys. Lett, 390, pp. 358-361
dc.descriptionZheng, J, Liu, Q, Zhang. H, Fang. D. Solvent effect on infrared spectra of methyl methacrylate in CCl4C6H14, CHCl3/C6H14 and C2H5 OH/C4H14 binary solvent systems. Spectrochim. Acta A 2004, 60, 3119-3123Henn. M.
dc.descriptionJurkschat, K.
dc.descriptionMansfeld, D.
dc.descriptionMehring, M.
dc.descriptionSchürmann, M. Synthesis and structure of and DFT-studies on 1,3,5-[P(O)(i-PrO) 2]3C6H3 and its CHCl3 adducts: analysis of the Cl3C-H⋯OP hydrogen bond. J. Mol. Struct. 2004, 697, 213-220Villa, A., Mark, A.E., Calculation of the Free Energy of Solvation for Neutral Analogs of Amino Acid Side Chains (2002) J. Comput. Chem, 23, pp. 548-553
dc.descriptionChambers, C.C., Hawkins, G.D., Cramer, C.J., Truhlar, D.G., Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects (1996) J. Phys. Chem, 100, pp. 16385-16398
dc.languageen
dc.publisher
dc.relationJournal of Physical Chemistry A
dc.rightsfechado
dc.sourceScopus
dc.titleConformational Study Of (8α,8′β)-bis(substituted Phenyl)-lignano-9,9'-lactones By Means Of Combined Computational, Database Mining, Nmr, And Chemometric Approaches
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución