dc.creatorZapata D.M.
dc.creatorMarquez M.A.
dc.creatorOssa D.M.
dc.date2007
dc.date2015-06-30T18:49:06Z
dc.date2015-11-26T14:36:55Z
dc.date2015-06-30T18:49:06Z
dc.date2015-11-26T14:36:55Z
dc.date.accessioned2018-03-28T21:41:02Z
dc.date.available2018-03-28T21:41:02Z
dc.identifier0878494529; 9780878494521
dc.identifierAdvanced Materials Research. , v. 20-21, n. , p. 134 - 138, 2007.
dc.identifier10226680
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-71749096618&partnerID=40&md5=cc19dfac541a1a4ec61c80ec755e63f5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104925
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104925
dc.identifier2-s2.0-71749096618
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248944
dc.descriptionThe sphalerite-pyrite oxidation by Acidithiobacillus ferrooxidans was studied to analyze how the formation of the elemental sulfur layers occurs around sphalerite grains. Two possible mechanisms of formation have been raised. One mechanism corresponds to the formation of sulfur pseudomorphs where, both, iron and zinc have been leached of the sphalerite, whereas compound sulfur is oxidized, in situ, to elemental sulfur, leaving an unreacted core of sphalerite that remains in the center. Another mechanism consists in the dissolution of iron, zinc and sulfur presents. When the attack by Fe3+ as by H + broken the S-metal bonds, sulfur is then oxidized to a series of sulfur intermediate compounds. These compounds in solution then are oxidized to elemental sulfur, which precipitates on sphalerite grains. © 2007 Trans Tech Publications.
dc.description20-21
dc.description
dc.description134
dc.description138
dc.descriptionDa Silva, G., Lastra, M.R., Budden, J.R., (2003) Minerals Engineering, 16, p. 199
dc.descriptionRodriguez, Y., Ballester, A., Blázquez, M.L., Gonzáles, F., Muñoz, J.A., (2003) Hydrometallurgy, 71, p. 57
dc.descriptionRossi, G., (1990) Biohydrometallurgy., , McGraw-Hill Book Company GmbH, Hamburg
dc.descriptionThomas, J.E., Skinner, W.M., Smart, R., (1998) Geochimica et Cosmochimica Acta, 62, p. 1555
dc.descriptionWeisener, C., Smart, R., Gerson, A., (2003) Geochimica et Cosmochimica Acta, 67, p. 823
dc.descriptionAhonen, L., Tuovinen, O., (1993) Geomicrobiology Journal, 10, p. 207
dc.descriptionDa Silva, G., (2004) Hydrometallurgy, 73, p. 313
dc.descriptionOssa, D.M., Márquez, M.A., Zapata, D.M., (2007) Submitted to Revista Colombiana de Biotecnología
dc.descriptionCrundwell, F., (1987) Hydrometallurgy, 33, p. 137
dc.descriptionCrundwell, F., (1988) AIChE Journal, 34, p. 1128
dc.descriptionFowler, T., Crundwell, F., (1999) Applied and Environmental Microbiology, 65, p. 5285
dc.descriptionSchippers, A., Sand, W., (1999) Applied and Environmental Microbiology, 65, p. 319
dc.languageen
dc.publisher
dc.relationAdvanced Materials Research
dc.rightsfechado
dc.sourceScopus
dc.titleSulfur Product Layer In Sphalerite Biooxidation: Evidences For A Mechanism Of Formation
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución