dc.creatorCosta C.A.R.
dc.creatorValadares L.F.
dc.creatorGalembeck F.
dc.date2007
dc.date2015-06-30T18:48:35Z
dc.date2015-11-26T14:36:47Z
dc.date2015-06-30T18:48:35Z
dc.date2015-11-26T14:36:47Z
dc.date.accessioned2018-03-28T21:40:49Z
dc.date.available2018-03-28T21:40:49Z
dc.identifier
dc.identifierColloids And Surfaces A: Physicochemical And Engineering Aspects. , v. 302, n. 01/03/15, p. 371 - 376, 2007.
dc.identifier9277757
dc.identifier10.1016/j.colsurfa.2007.02.061
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34248184994&partnerID=40&md5=5bed9f1aa265a6a9242b9c5aebdb7ddf
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104882
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104882
dc.identifier2-s2.0-34248184994
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248891
dc.descriptionMicro-indentation experiments were performed on monoliths prepared by drying dispersions of Stöber silica nano-sized particles in the 15-115 nm diameter range. Monolith hardness and resistance to fracture change gradually: the monoliths made with the smaller particles have smoother surfaces and resist to higher indentation forces while the monoliths made out of the larger particles are very brittle. These differences are assigned to changes in particle microchemistry associated to the differences in particle sizes, evidenced in a previous work from this group: larger particles are more extensively cross-linked and thus less plastic than smaller particles. This is in turn due to a larger amount of non-hydrolyzed ethoxy groups in the smaller particles, which limits the extent of cross-linking and creates domains containing linear siloxane chains that contribute to mechanical energy dissipation and thus to increased monolith tenacity and decreased hardness. Optical and electron microscopy examination of monolith surfaces show a large number of defects at different scales on the monoliths formed by larger particles. Under high magnification in a field-emission scanning electron microscope, larger particles appear less deformed and less densely packed than the smaller particles, thus contributing to lower cohesion energy. These results show a clear connection between the conditions for particle formation, their chemical and morphological features and the resulting mechanical properties of macroscopic solids. © 2007 Elsevier B.V. All rights reserved.
dc.description302
dc.description01/03/15
dc.description371
dc.description376
dc.descriptionStöber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in micron size range (1968) J. Colloid Interf. Sci., 26, p. 62
dc.descriptionHardikar, V.V., Matijevic, E., Coating of nanosize silver particles with silica (2000) J. Colloid Interf. Sci., 221, p. 133
dc.descriptionKobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., Liz-Marzan, L.M., Silica coating of silver nanoparticles using a modified Stöber method (2005) J. Colloid Interf. Sci., 283, p. 392
dc.descriptionPontoni, D., Narayanan, T., Rennie, A.R., Time-resolved SAXS study of nucleation and growth of silica colloids (2002) Langmuir, 18, p. 56
dc.descriptionTolnai, G., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Z., Kovacs, A.L., Ramsden, J.J., Horvolgyi, Z., Preparation and characterization of surface-modified silica-nanoparticles (2001) Langmuir, 17, p. 2683
dc.descriptionTissot, I., Reymond, J.P., Lefebvre, F., Bourgeat-Lami, E., SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles (2002) Chem. Mater., 14, p. 1325
dc.descriptionGreen, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W., Harris, M.T., Size, volume fraction, and nucleation of Stöber silica nanoparticles (2003) J. Colloid Interf. Sci., 266, p. 346
dc.descriptionLiu, J., Pelton, R., Hrymak, A.N., Properties of poly(N-isopropylacrylamide)-grafted colloidal silica (2000) J. Colloid Interf. Sci., 227, p. 408
dc.descriptionTianbin, W., Yangchuan, K., Preparation of silica-PS composite particles and their application in PET (2006) Eur. Polym. J., 42, p. 274
dc.descriptionDing, X.F., Yu, K.F., Jiang, Y.Q., Hari-Bala, Zhang, H.B., Wang, Z.C., A novel approach to the synthesis of hollow silica nanoparticles (2004) Mater. Lett., 58, p. 3618
dc.descriptionGraf, C., Vossen, D.L.J., Imhor, A., van Blaaderen, A., A general method to coat colloidal particles with silica (2003) Langmuir, 19, p. 6693
dc.descriptionRubio, E., Almaral, J., Ramírez-Bon, R., Castaño, V., Rodríguez, V., Organic-inorganic hybrid coating (poly(methylmethacrylate)/monodisperse silica) (2005) Opt. Mater., 27, p. 1266
dc.descriptionMonteiro, O.C., Esteves, A.C.C., Trindade, T., The synthesis of SiO2@CdS nanocomposites using single-molecule precursors (2002) Chem. Mater., 14, p. 2900
dc.descriptionDhas, N.A., Zaban, A., Gedanken, A., Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties (1999) Chem. Mater., 11, p. 806
dc.descriptionKobayashi, M., Skarba, M., Galletto, P., Cakara, D., Borkovec, M., Effects of heat treatment on the aggregation and charging of Stöber-type silica (2005) J. Colloid Interf. Sci., 292, p. 139
dc.descriptionOh, M.H., So, J.H., Lee, J.D., Yang, S.M., Preparation of silica dispersion and its phase stability in the presence of salts (1999) Korean J. Chem. Eng., 16, p. 532
dc.descriptionIler, R.K., (1979) The Chemistry of Silica, , Wiley, New York
dc.descriptionTakahashi, R., Sato, S., Sodesawa, T., Tomita, Y., Thermal properties of monolithic silica and silica-zirconia with bimodal pore structures (2005) J. Ceram. Soc. Jpn., 113, p. 92
dc.descriptionChabanov, A.A., Jun, Y., Norris, D.J., Avoiding cracks in self-assembled photonic band-gap crystals (2004) Appl. Phys. Lett., 84, p. 3573
dc.descriptionSuratwala, T., Hanna, M.L., Whitman, P., Effect of humidity during the coating of Stöber silica sols (2004) J. Non-Cryst. Solids, 349, p. 368
dc.descriptionKim, D.Y., Kowach, G.R., Johnson, D.W., Bhandarkar, S., Du, H., Fabrication of pure silica films for planar optical waveguides using colloidal suspensions (2004) J. Non-Cryst. Solids, 342, p. 18
dc.descriptionOhno, T., Suzuki, H., Takahashi, J., Shimada, S., Ota, T., Takahashi, M., Hikichi, Y., Microstructure control of silica thin film by spin coating method (2002) Key Eng. Mater., 206, p. 2185
dc.descriptionCosta, C.A.R., Leite, C.A.P., Galembeck, F., Size dependence of Stöber silica nanoparticle microchemistry (2003) J. Phys. Chem. B, 107, p. 4747
dc.descriptionCosta, C.A.R., Leite, C.A.P., Souza, E.F., Galembeck, F., Size effects on the microchemistry and plasticity of Stöber silica particles: a study using EFTEM, FESEM, and AFM-SEPM microscopies (2001) Langmuir, 17, p. 189
dc.descriptionLeite, C.A.P., de Souza, E.F., Galembeck, F., Core-and-shell nature of Stöber silica particles (2001) J. Braz. Chem. Soc., 12, p. 519
dc.descriptionPharr, G.M., Measurement of mechanical properties by ultra-low load indentation (1998) Mater. Sci. Eng., A253, p. 151
dc.descriptionOliver, W.C., Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology (2004) J. Mater. Res., 19, p. 3
dc.descriptionGall, K., Liu, Y.P., Routkevitch, D., Finch, D.S., Instrumented microindentation of nanoporous alumina films (2006) J. Eng. Mater. Technol., 128, p. 225
dc.descriptionLach, R., Kim, G.M., Michler, G.H., Grellmann, W., Albrecht, K., Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites (2006) Macromol. Mater. Eng., 291, p. 263
dc.descriptionGerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J.V., Girshick, S.L., Reverse plasticity in single crystal silicon nanospheres (2005) Int. J. Plasticity, 21, p. 2391
dc.descriptionRouth, A.F., Russel, W.B., Deformation mechanisms during latex film formation: experimental evidence (2001) Ind. Eng. Chem. Res., 40, p. 4302
dc.languageen
dc.publisher
dc.relationColloids and Surfaces A: Physicochemical and Engineering Aspects
dc.rightsfechado
dc.sourceScopus
dc.titleStöber Silica Particle Size Effect On The Hardness And Brittleness Of Silica Monoliths
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución