dc.creator | Costa C.A.R. | |
dc.creator | Valadares L.F. | |
dc.creator | Galembeck F. | |
dc.date | 2007 | |
dc.date | 2015-06-30T18:48:35Z | |
dc.date | 2015-11-26T14:36:47Z | |
dc.date | 2015-06-30T18:48:35Z | |
dc.date | 2015-11-26T14:36:47Z | |
dc.date.accessioned | 2018-03-28T21:40:49Z | |
dc.date.available | 2018-03-28T21:40:49Z | |
dc.identifier | | |
dc.identifier | Colloids And Surfaces A: Physicochemical And Engineering Aspects. , v. 302, n. 01/03/15, p. 371 - 376, 2007. | |
dc.identifier | 9277757 | |
dc.identifier | 10.1016/j.colsurfa.2007.02.061 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-34248184994&partnerID=40&md5=5bed9f1aa265a6a9242b9c5aebdb7ddf | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/104882 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/104882 | |
dc.identifier | 2-s2.0-34248184994 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1248891 | |
dc.description | Micro-indentation experiments were performed on monoliths prepared by drying dispersions of Stöber silica nano-sized particles in the 15-115 nm diameter range. Monolith hardness and resistance to fracture change gradually: the monoliths made with the smaller particles have smoother surfaces and resist to higher indentation forces while the monoliths made out of the larger particles are very brittle. These differences are assigned to changes in particle microchemistry associated to the differences in particle sizes, evidenced in a previous work from this group: larger particles are more extensively cross-linked and thus less plastic than smaller particles. This is in turn due to a larger amount of non-hydrolyzed ethoxy groups in the smaller particles, which limits the extent of cross-linking and creates domains containing linear siloxane chains that contribute to mechanical energy dissipation and thus to increased monolith tenacity and decreased hardness. Optical and electron microscopy examination of monolith surfaces show a large number of defects at different scales on the monoliths formed by larger particles. Under high magnification in a field-emission scanning electron microscope, larger particles appear less deformed and less densely packed than the smaller particles, thus contributing to lower cohesion energy. These results show a clear connection between the conditions for particle formation, their chemical and morphological features and the resulting mechanical properties of macroscopic solids. © 2007 Elsevier B.V. All rights reserved. | |
dc.description | 302 | |
dc.description | 01/03/15 | |
dc.description | 371 | |
dc.description | 376 | |
dc.description | Stöber, W., Fink, A., Bohn, E., Controlled growth of monodisperse silica spheres in micron size range (1968) J. Colloid Interf. Sci., 26, p. 62 | |
dc.description | Hardikar, V.V., Matijevic, E., Coating of nanosize silver particles with silica (2000) J. Colloid Interf. Sci., 221, p. 133 | |
dc.description | Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., Liz-Marzan, L.M., Silica coating of silver nanoparticles using a modified Stöber method (2005) J. Colloid Interf. Sci., 283, p. 392 | |
dc.description | Pontoni, D., Narayanan, T., Rennie, A.R., Time-resolved SAXS study of nucleation and growth of silica colloids (2002) Langmuir, 18, p. 56 | |
dc.description | Tolnai, G., Csempesz, F., Kabai-Faix, M., Kalman, E., Keresztes, Z., Kovacs, A.L., Ramsden, J.J., Horvolgyi, Z., Preparation and characterization of surface-modified silica-nanoparticles (2001) Langmuir, 17, p. 2683 | |
dc.description | Tissot, I., Reymond, J.P., Lefebvre, F., Bourgeat-Lami, E., SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles (2002) Chem. Mater., 14, p. 1325 | |
dc.description | Green, D.L., Lin, J.S., Lam, Y.F., Hu, M.Z.C., Schaefer, D.W., Harris, M.T., Size, volume fraction, and nucleation of Stöber silica nanoparticles (2003) J. Colloid Interf. Sci., 266, p. 346 | |
dc.description | Liu, J., Pelton, R., Hrymak, A.N., Properties of poly(N-isopropylacrylamide)-grafted colloidal silica (2000) J. Colloid Interf. Sci., 227, p. 408 | |
dc.description | Tianbin, W., Yangchuan, K., Preparation of silica-PS composite particles and their application in PET (2006) Eur. Polym. J., 42, p. 274 | |
dc.description | Ding, X.F., Yu, K.F., Jiang, Y.Q., Hari-Bala, Zhang, H.B., Wang, Z.C., A novel approach to the synthesis of hollow silica nanoparticles (2004) Mater. Lett., 58, p. 3618 | |
dc.description | Graf, C., Vossen, D.L.J., Imhor, A., van Blaaderen, A., A general method to coat colloidal particles with silica (2003) Langmuir, 19, p. 6693 | |
dc.description | Rubio, E., Almaral, J., Ramírez-Bon, R., Castaño, V., Rodríguez, V., Organic-inorganic hybrid coating (poly(methylmethacrylate)/monodisperse silica) (2005) Opt. Mater., 27, p. 1266 | |
dc.description | Monteiro, O.C., Esteves, A.C.C., Trindade, T., The synthesis of SiO2@CdS nanocomposites using single-molecule precursors (2002) Chem. Mater., 14, p. 2900 | |
dc.description | Dhas, N.A., Zaban, A., Gedanken, A., Surface synthesis of zinc sulfide nanoparticles on silica microspheres: sonochemical preparation, characterization, and optical properties (1999) Chem. Mater., 11, p. 806 | |
dc.description | Kobayashi, M., Skarba, M., Galletto, P., Cakara, D., Borkovec, M., Effects of heat treatment on the aggregation and charging of Stöber-type silica (2005) J. Colloid Interf. Sci., 292, p. 139 | |
dc.description | Oh, M.H., So, J.H., Lee, J.D., Yang, S.M., Preparation of silica dispersion and its phase stability in the presence of salts (1999) Korean J. Chem. Eng., 16, p. 532 | |
dc.description | Iler, R.K., (1979) The Chemistry of Silica, , Wiley, New York | |
dc.description | Takahashi, R., Sato, S., Sodesawa, T., Tomita, Y., Thermal properties of monolithic silica and silica-zirconia with bimodal pore structures (2005) J. Ceram. Soc. Jpn., 113, p. 92 | |
dc.description | Chabanov, A.A., Jun, Y., Norris, D.J., Avoiding cracks in self-assembled photonic band-gap crystals (2004) Appl. Phys. Lett., 84, p. 3573 | |
dc.description | Suratwala, T., Hanna, M.L., Whitman, P., Effect of humidity during the coating of Stöber silica sols (2004) J. Non-Cryst. Solids, 349, p. 368 | |
dc.description | Kim, D.Y., Kowach, G.R., Johnson, D.W., Bhandarkar, S., Du, H., Fabrication of pure silica films for planar optical waveguides using colloidal suspensions (2004) J. Non-Cryst. Solids, 342, p. 18 | |
dc.description | Ohno, T., Suzuki, H., Takahashi, J., Shimada, S., Ota, T., Takahashi, M., Hikichi, Y., Microstructure control of silica thin film by spin coating method (2002) Key Eng. Mater., 206, p. 2185 | |
dc.description | Costa, C.A.R., Leite, C.A.P., Galembeck, F., Size dependence of Stöber silica nanoparticle microchemistry (2003) J. Phys. Chem. B, 107, p. 4747 | |
dc.description | Costa, C.A.R., Leite, C.A.P., Souza, E.F., Galembeck, F., Size effects on the microchemistry and plasticity of Stöber silica particles: a study using EFTEM, FESEM, and AFM-SEPM microscopies (2001) Langmuir, 17, p. 189 | |
dc.description | Leite, C.A.P., de Souza, E.F., Galembeck, F., Core-and-shell nature of Stöber silica particles (2001) J. Braz. Chem. Soc., 12, p. 519 | |
dc.description | Pharr, G.M., Measurement of mechanical properties by ultra-low load indentation (1998) Mater. Sci. Eng., A253, p. 151 | |
dc.description | Oliver, W.C., Pharr, G.M., Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology (2004) J. Mater. Res., 19, p. 3 | |
dc.description | Gall, K., Liu, Y.P., Routkevitch, D., Finch, D.S., Instrumented microindentation of nanoporous alumina films (2006) J. Eng. Mater. Technol., 128, p. 225 | |
dc.description | Lach, R., Kim, G.M., Michler, G.H., Grellmann, W., Albrecht, K., Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites (2006) Macromol. Mater. Eng., 291, p. 263 | |
dc.description | Gerberich, W.W., Mook, W.M., Cordill, M.J., Carter, C.B., Perrey, C.R., Heberlein, J.V., Girshick, S.L., Reverse plasticity in single crystal silicon nanospheres (2005) Int. J. Plasticity, 21, p. 2391 | |
dc.description | Routh, A.F., Russel, W.B., Deformation mechanisms during latex film formation: experimental evidence (2001) Ind. Eng. Chem. Res., 40, p. 4302 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Colloids and Surfaces A: Physicochemical and Engineering Aspects | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Stöber Silica Particle Size Effect On The Hardness And Brittleness Of Silica Monoliths | |
dc.type | Artículos de revistas | |