dc.creatorCarlos C.
dc.creatorCastro D.B.A.
dc.creatorOttoboni L.M.M.
dc.date2014
dc.date2015-06-25T17:54:52Z
dc.date2015-11-26T14:36:35Z
dc.date2015-06-25T17:54:52Z
dc.date2015-11-26T14:36:35Z
dc.date.accessioned2018-03-28T21:40:31Z
dc.date.available2018-03-28T21:40:31Z
dc.identifier
dc.identifierPlos One. Public Library Of Science, v. 9, n. 11, p. - , 2014.
dc.identifier19326203
dc.identifier10.1371/journal.pone.0111626
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84915820087&partnerID=40&md5=acf4db65558cbd02cf1bb31664aeb9ea
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86756
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86756
dc.identifier2-s2.0-84915820087
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248817
dc.descriptionBy comparing the SEED and Pfam functional profiles of metagenomes of two Brazilian coral species with 29 datasets that are publicly available, we were able to identify some functions, such as protein secretion systems, that are overrepresented in the metagenomes of corals and may play a role in the establishment and maintenance of bacteria-coral associations. However, only a small percentage of the reads of these metagenomes could be annotated by these reference databases, which may lead to a strong bias in the comparative studies. For this reason, we have searched for identical sequences (99% of nucleotide identity) among these metagenomes in order to perform a reference-independent comparative analysis, and we were able to identify groups of microbial communities that may be under similar selective pressures. The identification of sequences shared among the metagenomes was found to be even better for the identification of groups of communities with similar niche requirements than the traditional analysis of functional profiles. This approach is not only helpful for the investigation of similarities between microbial communities with high proportion of unknown reads, but also enables an indirect overview of gene exchange between communities.
dc.description9
dc.description11
dc.description
dc.description
dc.descriptionDutilh, B.E., Schmieder, R., Nulton, J., Felts, B., Salamon, P., Referenceindependent comparative metagenomics using cross-assembly: CrAss (2012) Bioinformatics, 28, pp. 3225-3231
dc.descriptionTeeling, H., Glöckner, F.O., Current opportunities and challenges in microbial metagenome analysis - A bioinformatic perspective (2012) Brief Bioinform, 13, pp. 728-742
dc.descriptionKloesges, T., Popa, O., Martin, W., Dagan, T., Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths (2010) Mol Biol Evol, 28, pp. 1057-1074
dc.descriptionSmillie, C.S., Smith, M.B., Friedman, J., Cordero, O.X., David, L.A., Ecology drives a global network of gene exchange connecting the human microbiome (2011) Nature, 480, pp. 241-244
dc.descriptionForsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O., The shared antibiotic resistome of soil bacteria and human pathogens (2012) Science, 337, pp. 1107-1111
dc.descriptionSchmieder, R., Edwards, R., Quality control and preprocessing of metagenomic datasets (2011) Bioinformatics, 27, pp. 863-886
dc.descriptionSchmieder, R., Lim, Y.W., Rohwer, F., Edwards, R., TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets (2010) BMC Bioinformatics, 11, p. 341
dc.descriptionMeyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., The metagenomics RAST server - A public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386
dc.descriptionLingner, T., Asshauer, K.P., Schreiber, F., Meinicke, P., CoMet - A web server for comparative functional profiling of metagenomes (2011) Nucleic Acids Res, 39, pp. W518-523
dc.descriptionRoux, S., Faubladier, M., Mahul, A., Paulhe, N., Bernard, A., Metavir: A web server dedicated to virome analysis (2011) Bioinformatics, 27, pp. 3074-3075
dc.descriptionWhite, J.R., Nagarajan, N., Pop, M., Statistical methods for detecting differentially abundant features in clinical metagenomic samples (2009) PLOS Comput Biol, 5, p. e1000352
dc.descriptionSzalay-Beko, M., Palotai, R., Szappanos, B., Kovács, I.A., Papp, B., ModuLand plug-in for Cytoscape: Determination of hierarchical layers of overlapping network modules and community centrality (2012) Bioinformatics, 28, pp. 2202-2204
dc.descriptionDelwart, E., Li, L., Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes (2012) Virus Res, 164, pp. 114-121
dc.descriptionKrupovic, M., Forterre, P., Microviridae goes temperate: Microvirus-related proviruses reside in the genomes of Bacteroidetes (2011) PLOS One, 10, p. e19893
dc.descriptionLabonté, J.M., Suttle, C.A., Metagenomic and whole-genome analysis reveals new lineages of gokushoviruses and biogeographic separation in the sea (2013) Front Microbiol, 4, p. 404
dc.descriptionAngly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., The marine viromes of four oceanic regions (2006) PLOS Biol, 4, p. e368
dc.descriptionSharp, K.H., Ritchie, K.B., Schupp, P.J., Ritson-Williams, R., Paul, V.J., Bacterial acquisition in juveniles of several broadcast spawning coral species (2010) PLOS One, 5, p. e10898
dc.descriptionBurke, C., Steinberg, P., Rusch, D., Kjelleberg, S., Thomas, T., Bacterial community assembly based on functional genes rather than species (2011) Proc Natl Acad Sci USA, 108, pp. 14288-14293
dc.descriptionCarlos, C., Torres, T.T., Ottoboni, L.M., Bacterial communities and speciesspecific associations with the mucus of Brazilian coral species (2013) Sci Rep, 2013, p. 31624
dc.descriptionSchöttner, S., Wild, C., Hoffmann, F., Boetius, A., Ramette, A., Spatial scales of bacterial diversity in cold-water coral reef ecosystems (2012) PLOS One, 7, p. e32093
dc.descriptionSchöttner, S., Hoffmann, F., Wild, C., Rapp, H.T., Boetius, A., Inter- and intra-habitat bacterial diversity associated with cold-water corals (2009) ISME J, 3, pp. 156-759
dc.descriptionGarcia, G.D., Gregoracci, G.B., Santos Ede, O., Meirelles, P.M., Silva, G.G., Metagenomic analysis of healthy and white plague-affected Mussismilia braziliensis corals (2013) Microb Ecol, 65, pp. 1076-1086
dc.descriptionVega Thurber, R., Willner-Hall, D., Rodriguez-Mueller, B., Desnues, C., Edwards, R.A., Metagenomic analysis of stressed coral holobionts (2009) Environ Microbiol, 11, pp. 2148-2163
dc.descriptionWegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., Rohwer, F., Metagenomic analysis of the microbial community associated with the coral Porites astreoides (2007) Environ Microbiol, 9, pp. 2707-2719
dc.descriptionFath, M.J., Mahanty, H.K., Kolter, R., Characterization of a purF operon mutation which affects colicin v production (1989) J Bacteriol, 171, pp. 3158-3161
dc.descriptionCharles, H., Balmand, S., Lamelas, A., Cottret, L., Pérez-Brocal, V., A genomic reappraisal of symbiotic function in the aphid/Buchnera symbiosis: Reduced transporter sets and variable membrane organisations (2011) PLOS One, 6, p. e29096
dc.descriptionGardebrecht, A., Markert, S., Sievert, S.M., Felbeck, H., Thürmer, A., Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics (2012) ISME J, 6, pp. 766-776
dc.descriptionHadjifrangiskou, M., Gu, A.P., Pinkner, J.S., Kostakioti, M., Zhang, E.W., Transposon mutagenesis identifies uropathogenic Escherichia coli biofilm factors (2012) J Bacteriol 2012, 194, pp. 6195-6205
dc.descriptionBreton, C., Structures and mechanisms of glycosyltransferases (2006) Glycobiology, 16, pp. 29-37
dc.descriptionUpreti, R.K., Kumar, M., Shankar, V., Bacterial glycoproteins: Functions, biosynthesis and applications (2003) Proteomics, 3, pp. 363-379
dc.descriptionYip, E.S., Grublesky, B.T., Hussa, E.A., Visick, K.L., A novel conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri (2005) Mol Microbiol, 57, pp. 1485-1498
dc.descriptionBrown Kav, A., Sasson, G., Jami, E., Doron-Faigenboim, A., Benhar, I., Insights into the bovine rumen plasmidome (2012) Proc Natl Acad Aci USA, 109, pp. 5452-5457
dc.descriptionTseng, T.T., Tyler, B.M., Setubal, J.C., Protein secretion systems in bacterialhost associations, and their description in the Gene Ontology (2009) BMC Microbiol, 9, p. S2
dc.descriptionGophna, U., Ron, E.Z., Graur, D., Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events (2003) Gene, 312, pp. 151-163
dc.descriptionBarret, M., Egan, F., O'Gara, F., Distribution and diversity of bacterial secretion systems across metagenomic datasets (2013) Environ Microbiol, 5, pp. 117-126
dc.descriptionBondarev, V., Richter, M., Romano, S., Piel, J., Schwedt, A., The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis (2013) Environ Microbiol, 15, pp. 2095-2113
dc.descriptionTrindade-Silva, A.E., Rua, C., Silva, G.G., Dutilh, B.E., Moreira, A.P., Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis (2012) PLOS One, 7, p. e39905
dc.descriptionTurnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., A core gut microbiome in obese and lean twins (2009) Nature, 457, pp. 480-484
dc.descriptionQu, A., Brulc, J.M., Wilson, M.K., Law, B.F., Theoret, J.R., Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome (2008) PLoS One, 3, p. e2945
dc.descriptionTamminen, M., Virta, M., Fani, R., Fondi, M., Large-scale analysis of plasmid relationships through gene-sharing networks (2011) Mol Biol Evol, 29, pp. 1225-1240
dc.descriptionMcCallum, H., Harvell, D., Dobson, A., Rates of spread of marine pathogens (2003) Ecol Lett, 6, pp. 1062-1067
dc.descriptionRohwer, F., Thurber, R.V., Viruses manipulate the marine environment (2009) Nature, 459, pp. 207-212
dc.descriptionMuniesa, M., Colomer-Lluch, M., Jofre, J., Potential impact of environmental bacteriophages in spreading antibiotic resistance genes (2013) Future Microbiol, 8, pp. 739-751
dc.descriptionBreitbart, M., Miyake, J.H., Rohwer, F., Global distribution of nearly identical phage-encoded DNA sequences (2004) FEMS Microbiol Lett, 236, pp. 249-256
dc.descriptionShort, C.M., Suttle, C.A., Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments (2005) Appl Environ Microbiol, 71, pp. 480-486
dc.languageen
dc.publisherPublic Library of Science
dc.relationPLoS ONE
dc.rightsaberto
dc.sourceScopus
dc.titleComparative Metagenomic Analysis Of Coral Microbial Communities Using A Reference-independent Approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución