dc.creatorAlexandre E.C.
dc.creatorLeiria L.O.
dc.creatorSilva F.H.
dc.creatorMendes-Silverio C.B.
dc.creatorCalmasini F.B.
dc.creatorDavel A.P.C.
dc.creatorMonica F.Z.
dc.creatorDe Nucci G.
dc.creatorAntunes E.
dc.date2014
dc.date2015-06-25T17:54:42Z
dc.date2015-11-26T14:36:12Z
dc.date2015-06-25T17:54:42Z
dc.date2015-11-26T14:36:12Z
dc.date.accessioned2018-03-28T21:39:50Z
dc.date.available2018-03-28T21:39:50Z
dc.identifier
dc.identifierJournal Of Pharmacology And Experimental Therapeutics. American Society For Pharmacology And Experimental Therapy, v. 349, n. 4, p. 2 - 9, 2014.
dc.identifier223565
dc.identifier10.1124/jpet.113.211029
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896455248&partnerID=40&md5=fd2f8d3443d80bb747a5dcbc1ef47957
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86741
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86741
dc.identifier2-s2.0-84896455248
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248639
dc.descriptionObesity has emerged as a major contributing risk factor for overactive bladder (OAB), but no study examined urethral smooth muscle (USM) dysfunction as a predisposing factor to obesity-induced OAB. This study investigated the USM relaxant machinery in obese mice and whether soluble guanylyl cyclase (sGC) activation with BAY 60-2770 [acid 4-({(4-carboxybutyl) [2-(5-fluoro-2-{[4- (trifluoromethyl) biphenyl-4-yl] methoxy} phenyl) ethyl] amino} methyl) benzoic] rescues the urethral reactivity through improvement of sGC-cGMP (cyclic guanosine monophosphate) signaling. Male C57BL/6 mice were fed for 12 weeks with a high-fat diet to induce obesity. Separate groups of animals were treated with BAY 60-2770 (1 mg/kg per day for 2 weeks). Functional assays and measurements of cGMP, reactive-oxygen species (ROS), and sGC protein expression in USM were determined. USM relaxations induced by NO (acidified sodium nitrite), NO donors (S-nitrosoglutathione and glyceryl trinitrate), and BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b] pyridin-3-yl]- pyrimidin-4-ylamine] (sGC stimulator) were markedly reduced in obese compared with lean mice. In contrast, USM relaxations induced by BAY 60-2770 (sGC activator) were 43% greater in obese mice (P < 0.05), which was accompanied by increases in cGMP levels. Oxidation of sGC with ODQ [1H-[1,2,4]oxadiazolo[4, 3-a]quinoxalin-1-one] (10 μM) potentiated BAY 60-2770-induced USM responses in the lean group. Long-term oral BAY 60-2770 administration fully prevented the impairment of USM relaxations in obese mice. Reactive-oxygen species (ROS) production was enhanced, but protein expression of β1 second guanylate cyclase subunit was reduced in USMfrom obesemice, both of which were restored by BAY 60-2770 treatment. In conclusion, impaired USM relaxation in obese mice is associated with ROS generation and down-regulation of sGC-cGMP signaling. Prevention of sGC degradation by BAY 60-2770 ameliorates the impairment of urethral relaxations in obese mice. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
dc.description349
dc.description4
dc.description2
dc.description9
dc.descriptionBennett, B.C., Kruse, M.N., Roppolo, J.R., Flood, H.D., Fraser, M., De Groat, W.C., Neural control of urethral outlet activity in vivo: Role of nitric oxide (1995) J Urol, 153, pp. 2004-2009
dc.descriptionBratslavsky, G., Kogan, B., Levin, R.M., Urethra is more sensitive to ischemia than bladder: Evidence from an in vitro rat study (2001) J Urol, 165, pp. 2086-2090
dc.descriptionCosta, G., Labadía, A., Triguero, D., Jiménez, E., García-Pascual, A., Nitrergic relaxation in urethral smooth muscle: Involvement of potassium channels and alternative redox forms of NO (2001) Naunyn Schmiedebergs Arch Pharmacol, 364, pp. 516-523
dc.descriptionDokita, S., Smith, S.D., Nishimoto, T., Wheeler, M.A., Weiss, R.M., Involvement of nitric oxide and cyclic GMP in rabbit urethral relaxation (1994) Eur J Pharmacol, 266, pp. 269-275
dc.descriptionFord, E.S., Giles, W.H., Dietz, W.H., Prevalence of the metabolic syndrome among US adults: Findings from the third National Health and Nutrition Examination Survey (2002) JAMA, 287, pp. 356-359
dc.descriptionFraser, M.O., Chancellor, M.B., Neural control of the urethra and development of pharmacotherapy for stress urinary incontinence (2003) BJU Int, 91, pp. 743-748
dc.descriptionFriebe, A., Koesling, D., Regulation of nitric oxide-sensitive guanylyl cyclase (2003) Circ Res, 93, pp. 96-105
dc.descriptionGasbarro, G., Lin, D.L., Vurbic, D., Quisno, A., Kinley, B., Daneshgari, F., Damaser, M.S., Voiding function in obese and type 2 diabetic female rats (2010) Am J Physiol Renal Physiol, 298, pp. F72-F77
dc.descriptionHoffmann, L.S., Schmidt, P.M., Keim, Y., Schaefer, S., Hhhw, S., Stasch, J.P., Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation (2009) Br J Pharmacol, 157, pp. 781-795
dc.descriptionHutcheson, R., Rocic, P., The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: The great exploration (2012) Exp Diabetes Res, 2012, p. 271028
dc.descriptionIrwin, D.E., Kopp, Z.S., Agatep, B., Milsom, I., Abrams, P., Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction (2011) BJU Int, 108, pp. 1132-1138
dc.descriptionJones, A.W., Durante, W., Korthuis, R.J., Heme oxygenase-1 deficiency leads to alteration of soluble guanylate cyclase redox regulation (2010) J Pharmacol Exp Ther, 335, pp. 85-91
dc.descriptionKagota, S., Maruyama, K., Tada, Y., Fukushima, K., Umetani, K., Wakuda, H., Shinozuka, K., Chronic oxidative-nitrosative stress impairs coronary vasodilation in metabolic syndrome model rats (2013) Microvasc Res, 88, pp. 70-78
dc.descriptionKlöss, S., Bouloumié, A., Mülsch, A., Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl cyclase (2000) Hypertension, 35, pp. 43-47
dc.descriptionKumar, V., Martin, F., Hahn, M.G., Schaefer, M., Stamler, J.S., Stasch, J.P., Van Den Akker, F., Insights into BAY 60-2770 activation and S-nitrosylationdependent desensitization of soluble guanylyl cyclase via crystal structures of homologous nostoc H-NOX domain complexes (2013) Biochemistry, 52, pp. 3601-3608. , DOI: 10.1021/bi301657w
dc.descriptionLasker, G.F., Pankey, E.A., Frink, T.J., Zeitzer, J.R., Walter, K.A., Kadowitz, P.J., The sGC activator BAY 60-2770 has potent erectile activity in the rat (2013) Am J Physiol Heart Circ Physiol, 304, pp. H1670-H1679
dc.descriptionLee, W.C., Chuang, Y.C., Chiang, P.H., Chien, C.T., Yu, H.J., Wu, C.C., Pathophysiological studies of overactive bladder and bladder motor dysfunction in a rat model of metabolic syndrome (2011) J Urol, 186, pp. 318-325
dc.descriptionLeiria, L.O., Silva, F.H., Davel, A.P., Alexandre, E.C., Calixto, M.C., De Nucci, G., Mónica, F.Z., Antunes, E., The soluble guanylyl cyclase activator BAY 60-2770 ameliorates overactive bladder in obese mice (2013) J Urol, , DOI: [published ahead of print]
dc.descriptionLeiria, L.O., Sollon, C., Calixto, M.C., Lintomen, L., Mónica, F.Z., Anhê, G.F., De Nucci, G., Antunes, E., Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice (2012) PLoS ONE, 7, pp. e48507
dc.descriptionLundberg, J.O., Weitzberg, E., NO generation from nitrite and its role in vascular control (2005) Arterioscler Thromb Vasc Biol, 25, pp. 915-922
dc.descriptionMayer, B., Kleschyov, A.L., Stessel, H., Russwurm, M., Münzel, T., Koesling, D., Schmidt, K., Inactivation of soluble guanylate cyclase by stoichiometric S-nitrosation (2009) Mol Pharmacol, 75, pp. 886-891
dc.descriptionMelichar, V.O., Behr-Roussel, D., Zabel, U., Uttenthal, L.O., Rodrigo, J., Rupin, A., Verbeuren, T.J., Schmidt, H.H., Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis (2004) Proc Natl Acad Sci USA, 101, pp. 16671-16676
dc.descriptionMeurer, S., Pioch, S., Pabst, T., Opitz, N., Schmidt, P.M., Beckhaus, T., Wagner, K., Geschka, S., Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation (2009) Circ Res, 105, pp. 33-41
dc.descriptionMichel, M.C., Vrydag, W., Alpha1-, α2- and β-adrenoceptors in the urinary bladder, urethra and prostate (2006) Br J Pharmacol, 147 (SUPPL. 2), pp. S88-S119
dc.descriptionMónica, F.Z., Reges, R., Cohen, D., Silva, F.H., De Nucci, G., D'Ancona, C.A., Antunes, E., Long-term administration of BAY 41-2272 prevents bladder dysfunction in nitric oxide-deficient rats (2011) Neurourol Urodyn, 30, pp. 456-460
dc.descriptionNobe, K., Yamazaki, T., Kumai, T., Okazaki, M., Iwai, S., Hashimoto, T., Kobayashi, S., Honda, K., Alterations of glucose-dependent and -independent bladder smooth muscle contraction in spontaneously hypertensive and hyperlipidemic rat (2008) J Pharmacol Exp Ther, 324, pp. 631-642
dc.descriptionParavicini, T.M., Touyz, R.M., NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities (2008) Diabetes Care, 31 (SUPPL. 2), pp. S170-S180
dc.descriptionPersson, K., Andersson, K.E., Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract (1994) Eur J Pharmacol, 268, pp. 159-167
dc.descriptionPriviero, F.B., Zemse, S.M., Teixeira, C.E., Webb, R.C., Oxidative stress impairs vasorelaxation induced by the soluble guanylyl cyclase activator BAY 41-2272 in spontaneously hypertensive rats (2009) Am J Hypertens, 22, pp. 493-499
dc.descriptionPriviero, F.B.M., Baracat, J.S., Teixeira, C.E., Claudino, M.A., De Nucci, G., Antunes, E., Mechanisms underlying relaxation of rabbit aorta by BAY 41-2272, a nitric oxide-independent soluble guanylate cyclase activator (2005) Clin Exp Pharmacol Physiol, 32, pp. 728-734
dc.descriptionRahman, N.U., Phonsombat, S., Bochinski, D., Carrion, R.E., Nunes, L., Lue, T.F., An animal model to study lower urinary tract symptoms and erectile dysfunction: The hyperlipidaemic rat (2007) BJU Int, 100, pp. 658-663
dc.descriptionRichter, H.E., Kenton, K., Huang, L., Nygaard, I., Kraus, S., Whitcomb, E., Chai, T.C., Dandreo, K.J., The impact of obesity on urinary incontinence symptoms, severity, urodynamic characteristics and quality of life (2010) J Urol, 183, pp. 622-628
dc.descriptionRuetten, H., Zabel, U., Linz, W., Schmidt, H.H., Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats (1999) Circ Res, 85, pp. 534-541
dc.descriptionRusso, I., Del Mese, P., Doronzo, G., Mattiello, L., Viretto, M., Bosia, A., Anfossi, G., Trovati, M., Resistance to the nitric oxide/cyclic guanosine 5′-monophosphate/ protein kinase G pathway in vascular smooth muscle cells from the obese Zucker rat, a classical animal model of insulin resistance: Role of oxidative stress (2008) Endocrinology, 149, pp. 1480-1489
dc.descriptionSayed, N., Baskaran, P., Ma, X., Van Den Akker, F., Beuve, A., Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation (2007) Proc Natl Acad Sci USA, 104, pp. 12312-12317
dc.descriptionSchmidt, H.H., Schmidt, P.M., Stasch, J.P., NO- and haem-independent soluble guanylate cyclase activators (2009) Handb Exp Pharmacol, (191), pp. 309-339
dc.descriptionStasch, J.P., Becker, E.M., Alonso-Alija, C., Apeler, H., Dembowsky, K., Feurer, A., Gerzer, R., Pleiss, U., NO-independent regulatory site on soluble guanylate cyclase (2001) Nature, 410, pp. 212-215
dc.descriptionStasch, J.P., Schmidt, P., Alonso-Alija, C., Apeler, H., Dembowsky, K., Haerter, M., Heil, M., Pleiss, U., NO- and haem-independent activation of soluble guanylyl cyclase: Molecular basis and cardiovascular implications of a new pharmacological principle (2002) Br J Pharmacol, 136, pp. 773-783
dc.descriptionStasch, J.P., Nedvetskypi, S., Nedvetskaya, T.Y., Ak, H.S., Meurer, S., Deile, M., Taye, A., Lapp, H., Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels (2006) J Clin Invest, 116, pp. 2552-2561
dc.descriptionSteers, W.D., Food for thought: Obesity as the major contributing factor for most urological disorders (2009) J Urol, 181, pp. 1983-1984
dc.descriptionTeixeira, C.E., Priviero, F.B.M., Todd Jr., J., Webb, R.C., Vasorelaxing effect of BAY 41-2272 in rat basilar artery: Involvement of cGMP-dependent and independent mechanisms (2006) Hypertension, 47, pp. 596-602
dc.descriptionToque, H.A.F., Antunes, E., Teixeira, C.E., De Nucci, G., Increased cyclic guanosine monophosphate synthesis and calcium entry blockade account for the relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in the rabbit penile urethra (2008) Urology, 72, pp. 711-715
dc.descriptionTorimoto, K., Fraser, M.O., Hirao, Y., De Groat, W.C., Chancellor, M.B., Yoshimura, N., Urethral dysfunction in diabetic rats (2004) J Urol, 171, pp. 1959-1964
dc.descriptionUckert, S., Kuczyk, M.A., Cyclic nucleotide metabolism including nitric oxide and phosphodiesterase-related targets in the lower urinary tract (2011) Handbook Exp Pharmacol, 202, pp. 527-542
dc.descriptionWang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J., Nitric oxide donors: Chemical activities and biological applications (2002) Chem Rev, 102, pp. 1091-1134
dc.languageen
dc.publisherAmerican Society for Pharmacology and Experimental Therapy
dc.relationJournal of Pharmacology and Experimental Therapeutics
dc.rightsfechado
dc.sourceScopus
dc.titleSoluble Guanylyl Cyclase (sgc) Degradation And Impairment Of Nitric Oxide-mediated Responses In Urethra From Obese Mice: Reversal By The Sgc Activator Bay 60-2770
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución