dc.creatorGiordani E.J.
dc.creatorFerreira I.
dc.creatorBalancin O.
dc.date2007
dc.date2015-06-30T18:47:25Z
dc.date2015-11-26T14:35:40Z
dc.date2015-06-30T18:47:25Z
dc.date2015-11-26T14:35:40Z
dc.date.accessioned2018-03-28T21:39:06Z
dc.date.available2018-03-28T21:39:06Z
dc.identifier
dc.identifierRevista Escola De Minas. , v. 60, n. 1, p. 55 - 62, 2007.
dc.identifier3704467
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34249908928&partnerID=40&md5=f288a42eded2c3c818a815ccffdfe0c0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104798
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104798
dc.identifier2-s2.0-34249908928
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1248440
dc.descriptionASTM F 138 austenitic stainless steel is extensively used as an orthopedic implant material. However, some aspects, such as low strength in the annealed condition and susceptibility to localized corrosion, limit wider use of this kind of steel. Recently, a high-nitrogen austenitic stainless steel, specified in the standard ISO 5832-9, has been indicated as an alternative to ASTM F 138 steel for more severe loading and permanent application inside the human body. In this work, microstructure, mechanical properties, corrosion resistance and fatigue behavior of both steels were determined and compared. ISO 5832-9 steel displayed better mechanical and corrosion behaviors than did ASTM F 138 steel The combination of these features lead ISO steel to enhanced fatigue performance in both neutral and aggressive environments. Analyzed were the role of nitrogen in solid solution, combined with niobium in the Z-phase, and the factors that led to superior ISO 5832-9 properties.
dc.description60
dc.description1
dc.description55
dc.description62
dc.descriptionBOSCHI, A.O. O que é necessário para que um material possa ser considerado um biomaterial. In: CONGRESSO ANUAL DA ABM, 50. 1995. São Pedro, SP, Brasil. Anais... São Pedro: ABM, 1995. v.6, p.43-53GOTMAN, I., Characteristics of metals used in implants (1997) Journal of Endurology, 11 (6), pp. 383-389
dc.descriptionGIORDANI, E.J., Propriedades e mecanismos de nucleação de trincas por fadiga em meio neutro e meio fisiológico artificial de dois aços inoxidáveis austeníticos utilizados como biomateriais (2001) Campinas: FEM/ UNICAMP, , Tese de Doutorado
dc.descriptionOROZCO, C.P.O., ALONSO-FALLEROS, N., TSCHIPTSCHIN, A.P. Estudo da resistência à corrosão dos diferentes tipos de aços inoxidáveis austeníticos utilizados em implantes cirúrgicos. In: CONGRESSO ANUAL DA ABM, 58. Rio de Janeiro, Brasil, 2003. Anais em CD ROMVILLAMIL, R.F.V. et alii. Comparative electrochemical studies of ISO 5832-9 and F138 stainless steels in sodium chloride, pH = 4.0 medium, ASTM STP 1438 G. In: WINTERS, L., NUTT, M. J. (Ed.). American Society for Testing and Materials. West conshohocken, PA, 2003RONDELLI, G., VICENTINI, B., CIGADA, A., Localized corrosion tests on austenitic stainless steels for biomedical applications (1997) British Corrosion Journal, 32 (3), pp. 193-196
dc.descriptionCAHOON, J.R., BANDYOPADHYA, R., TENNESE, L., The concept of protection potential applied to the corrosion of metallic orthopedic implants (1975) Journal of Biomedical Materials Research, 6, pp. 259-264
dc.descriptionGIORDANI, E.J., JORGE Jr., A.M., BALANCIN, O., Evidence of strain-induced precipitation on a Nb- and N-bearing austenitic stainless steel biomaterial (2005) Materials Science Forum, 500, pp. 179-186
dc.descriptionNYSTRÖM, M., et alii, Influence of nitrogen and grain size on deformation behaviour of austenitic stainless steel (1997) Materials Science and Technology, 13 (7), pp. 560-567
dc.descriptionSTOLTZ, R.E., VANDER SANDE, J.B., The effect of nitrogen on stacking fault energy of Fe-Ni-Cr-Mn steels (1980) Metallurgical Transactions A, 11. , 1p.033-1037
dc.descriptionPICKERING, F.B. Lille, France, 1988. Some beneficial effect of nitrogen in steels. In: INTERNATIONAL CONFERENCE ON NITROGEN STEELS. Proceedings... In: FOCT, J., HENDRY, A. (Ed.). London: The Institute of Metals, 1989 p.10-31LEVEY, P.R., BENNEKOM, A., A mechanistic study of the effects of nitrogen on the corrosion properties on stainless steels (1995) Corrosion, 51 (12), pp. 911-921
dc.descriptionKAMACHI MUDALI, U. et alii. Relationship between pitting and intergranular corrosion of nitrogen-bearing austenitic stainless steels. ISIJ International, v.36, n.7, p.799-806, 1996JARGELIUS-FETTERSSON, R.F.A., Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels (1999) Corrosion Science, 41 (8), pp. 1639-1664
dc.descriptionGRABKE, H.J., The role of nitrogen in the corrosion of iron and steels (1996) ISIJ International, 36 (7), pp. 777-786
dc.descriptionSUDARSHAN, T.S., SRIVATSAN, T.S., HARVEY II, D.P., Fatigue processes in metals - role of aqueous environments (1990) Engineering Fracture Mechanics, 36 (6), pp. 827-852
dc.descriptionGIORDANI, E.J., et alii, Effect of precipitates on the corrosion-fatigue crack initiation of ISO 5832-9 stainless steel biomaterials (2004) International Journal of Fatigue, 26 (10), pp. 1129-1136
dc.languagept
dc.publisher
dc.relationRevista Escola de Minas
dc.rightsaberto
dc.sourceScopus
dc.titleMechanical Properties And The Corrosion Of Two Austenitic Stainless Steels Used In The Manufacture Of Orthopedic Implants [propriedades Mecânicas E De Corrosão De Dois Aços Inoxidáveis Austeníticos Utilizados Na Fabricação De Implantes Ortopédicos]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución