Artículos de revistas
Itinerant Electron Metamagnetism And Magnetocaloric Effect In Rco2-based Laves Phase Compounds
Registro en:
Journal Of Magnetism And Magnetic Materials. , v. 317, n. 01/02/15, p. 68 - 79, 2007.
3048853
10.1016/j.jmmm.2007.04.009
2-s2.0-34347217867
Autor
Singh N.K.
Suresh K.G.
Nigam A.K.
Malik S.K.
Coelho A.A.
Gama S.
Institución
Resumen
By virtue of the itinerant electron metamagnetism (IEM), the RCo2 compounds with R=Er, Ho and Dy are found to show first-order magnetic transition at their ordering temperatures. The inherent instability of Co sublattice magnetism is responsible for the occurrence of IEM, which leads to interesting magnetic and related physical properties. The systematic studies of the variations in the magnetic and magnetocaloric properties of the RCo2-based compounds show that the magnetovolume effect plays a decisive role in determining the nature of magnetic transitions and hence the magnetocaloric effect (MCE) in these compounds. It is found that the spin fluctuations arising from the magnetovolume effect reduce the strength of IEM, which subsequently lead to a reduction in the MCE. Most of the substitutions at the Co site are found to result in a positive magnetovolume effect, leading to an initial increase in the ordering temperature. Application of pressure, on the other hand, causes a reduction in the ordering temperature due to the negative magnetovolume effect. A comparative study of the magnetic and magnetocaloric properties of RCo2 compounds under various substitutions and applied pressure is presented. Analysis of the magnetization data using the Landau theory of magnetic phase transitions has shown that there is a strong correlation between the Landau coefficients and the MCE. The variations seen in the order of magnetic transition and the MCE values seem to support the recent model proposed by Khmelevskyi and Mohn for the occurrence of IEM in RCo2 compounds. Metastable nature of the transition metal sublattice in RCo2-based compounds and its role in determining the magnetic and magnetocaloric properties is explained. © 2007 Elsevier B.V. All rights reserved. 317 01/02/15 68 79 Jiles, D.C., (2003) Acta Mater., 51, p. 5907 Pecharsky, V.K., Gschneidner Jr., K.A., (1999) J. Magn. Magn. Mater., 200, p. 44 Bruck, E., (2005) J. Phys. D, 38, pp. R381 Warburg, E., (1881) Ann. Phys., 13, p. 141 Debye, P., (1926) Ann. Phys., 81, p. 1154 Giauque, W.F., (1927) J. Am. Chem. Soc., 49, p. 1864 Gschneidner Jr., K.A., (2002) J. Alloys Compd., 344, p. 356 Tishin, A.M., Gschneidner Jr., K.A., Pecharsky, V.K., (1999) Phys. Rev. B, 59, p. 503 Foldeaki, M., Chahine, R., Bose, T.K., (1995) J. Appl. Phys., 77, p. 3528 Pecharsky, V.K., Gschneidner Jr., K.A., (1999) J. Appl. Phys., 86, p. 565 Zemansky, M.W., (1981) Heat and Thermodynamics, , McGraw-Hill, New York Pecharsky, V.K., Gschneidner Jr., K.A., (1996) Adv. Cryog. Eng., 42, p. 423 Giauque, W.F., MacDougall, I.D.P., (1933) Phys. Rev. B, 43, p. 768 Ishimoto, H., Nishida, N., Furubayashi, T., Shinohara, M., Takano, Y., Miura, Y., Ono, K., (1984) J. Low Temp. Phys., 55, p. 17 Levitin, R.Z., Snegirev, V.V., Kopylov, A.V., Lagutin, A.S., Gerber, A., (1997) J. Magn. Magn. Mater., 170, p. 223 Gschneidner Jr., K.A., Pecharsky, V.K., Malik, S.K., (1996) Adv. Cryog. Eng., 42, p. 475 Singh, N.K., Agarwal, S., Suresh, K.G., Nirmala, R., Nigam, A.K., Malik, S.K., (2005) Phys. Rev. B, 72, p. 014452 Takeya, H., Pechasky, V.K., Gschneidner Jr., K.A., Moorman, J.O., (1994) Appl. Phys. Lett., 64, p. 2739 Singh, N.K., Suresh, K.G., Nirmala, R., Nigam, A.K., Malik, S.K., (2006) J. Appl. Phys., 99, pp. 08K904 Pecharsky, V.K., Gschneidner Jr., K.A., (1997) Appl. Phys. Lett., 70, p. 3299 Pecharsky, V.K., Gschneidner Jr., K.A., (2001) J. Appl. Phys., 90, p. 4614 Wada, H., Tanabe, Y., (2001) Appl. Phys. Lett., 79, p. 3302 Tegus, O., Bruck, E., Buschow, K.H.J., de Boer, F.R., (2002) Nature, 415, p. 150 Gratz, E., Markosyan, A.S., (2001) J. Phys.: Condens. Matter, 13, pp. R385 Wada, H., Tanabe, Y., Shiga, M., Sugawara, H., Sato, H., (2001) J. Alloys Compd., 316, p. 245 Duc, N.H., Anh Kim, D.T., Brommer, P.E., (2002) Physica B, 319, p. 1 Prokleska, J., Vejpravova, J., Vasylyev, D., Sechovsky, V., (2004) J. Alloys Compd, 383, p. 122 Singh, N.K., Suresh, K.G., Nigam, A.K., Malik, S.K., (2005) J. Appl. Phys., 97, pp. 10A301 Tohei, T., Wada, H., (2004) J. Magn. Magn. Mater., 280, p. 101 Wang, D., Tang, S., Liu, H., Zhong, W., Du, Y., (2003) Mater. Lett., 57, p. 3884 Han, Z., Hua, Z., Wang, D., Zhang, C., Gu, B., Du, Y., (2006) J. Magn. Magn. Mater., 302, p. 109 Buschow, K.H.J., (1980) Ferromagnetic Materials, 1. , Wohlfarth E.P. (Ed), North-Holland, Amsterdam Duc, N.H., Hien, T.D., Brommer, P.E., Franse, J.J.M., (1992) J. Magn. Magn. Mater., 104-107, p. 1252 Hauser, R., Bauer, E., Gratz, E., Müller, H., Rotter, M., Michor, H., Hilscher, G., Goto, T., (2000) Phys. Rev. B, 61, p. 1198 Gignoux, D., Schmitt, D., (1991) J. Magn. Magn. Mater., 100, p. 99 Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K., (2003) Phys. Rev. B, 67, p. 104416 Singh, N.K., Suresh, K.G., Nigam, A.K., (2003) Solid State Commun., 127, p. 373 Wohlfarth, E.P., Rhodes, P., (1962) Philos. Magn., 7, p. 1817 Ohta, M., Fukamichi, K., Fujita, A., Saito, H., Goto, T., (2005) J. Alloys Compd., 394, p. 43 Duc, N.H., Brommer, P., (1999) Handbook on Magnetic Materials, 12. , Buschow K.H.J. (Ed), North-Holland, Amsterdam Bloch, D., Ewards, D.M., Shimizu, M., Voiron, J., (1975) J. Phys. F, 5, p. 1217 Inoue, J., Shimizu, M., (1982) J. Phys. F, 12, p. 1811 Khmelevskyi, S., Mohn, P., (2000) J. Phys.: Condens. Matter, 12, p. 9453 Singh, N.K., Kumar, P., Suresh, K.G., Nigam, A.K., Coelho, A.A., Gama, S., (2007) J. Phys.: Condens. Matter, 19, p. 036213 Vasylyev, D., Prokleska, J., Sebek, J., Sechovsky, V., (2005) J. Alloys Compd., 394, p. 96 Duc, N.H., Hien, T.D., Levitin, R.Z., Markosyan, A.S., Brommer, P.E., Franse, J.J.M., (1992) J. Alloys Compd., 176, p. 232 Prokleska, J., Vejpravova, J., Vasylyev, D., Danis, S., Sechovsky, V., (2005) J. Magn. Magn. Mater., 290-291, p. 676 Baranov, N.V., Pirogov, A.N., (1993) J. Alloys Compd., 202, p. 17 Ouyang, Z.W., Rao, G.H., Yang, H.F., Liu, W.F., Liu, G.Y., Feng, X.M., Liang, J.K., (2004) Physica B, 344, p. 436 Podlesnyak, A., Teplykh, A., Teplykh, P., Krivoshchekov, A., Sadykov, R., (2004) Physica B, 350, pp. E143 Syshchenko, O., Fujita, T., Sechovsky, V., Divis, M., Fujii, H., (2001) Phys. Rev. B, 63, p. 054433 Yamada, H., (1995) J. Magn. Magn. Mater., 139, p. 162 Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O., (2005) Rep. Prog. Phys., 68, p. 1479 Singh, N.K., Kumar, P., Suresh, K.G., Coelho, A.A., Gama, S., Nigam, A.K., (2007) J. Phys. D, 40, p. 1620 Duc, N.H., Sechovsky, V., Hung, D.T., Kim-Ngan, N.H., (1992) Physica B, 179, p. 111 Yamada, H., (1993) Phys. Rev. B., 47, p. 11211 Hauser, R., Bauer, E., Gratz, E., (1998) Phys. Rev. B, 57, p. 2904 Yamada, H., Goto, T., (2003) Phys. Rev. B., 68, p. 184417 Fujita, A., Fukamichi, K., (2005) IEEE Trans. Magn., 41, p. 3490