dc.creatorRodrigues Jr. W.A.
dc.date2007
dc.date2015-06-30T18:46:17Z
dc.date2015-11-26T14:33:58Z
dc.date2015-06-30T18:46:17Z
dc.date2015-11-26T14:33:58Z
dc.date.accessioned2018-03-28T21:37:21Z
dc.date.available2018-03-28T21:37:21Z
dc.identifier
dc.identifierAnnales De La Fondation Louis De Broglie. , v. 32, n. 4, p. 425 - 478, 2007.
dc.identifier1824295
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-49249109268&partnerID=40&md5=deed577f70ce351870539bf5d28236ad
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104693
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104693
dc.identifier2-s2.0-49249109268
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247985
dc.descriptionIn this paper after recalling some essential tools concerning the theory of differential forms in the Cartan, Hodge and Clifford bundles over a Riemannian or Riemann-Cartan space or a Lorentzian or Riemann-Cartan spacetime we solve with details several exercises involving different grades of difficult. One of the problems is to show that a recent formula given in [10] for the exterior covariant derivative of the Hodge dual of the torsion 2-forms is simply wrong. We believe that the paper will be useful for students (and eventually for some experts) on applications of differential geometry to some physical problems. A detailed account of the issues discussed in the paper appears in the table of contents.
dc.description32
dc.description4
dc.description425
dc.description478
dc.languageen
dc.publisher
dc.relationAnnales de la Fondation Louis de Broglie
dc.rightsfechado
dc.sourceScopus
dc.titleDifferential Forms On Riemannian (lorentzian) And Riemann-cartan Structures And Some Applications To Physics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución