dc.creatorSilveira J.V.
dc.creatorSavu R.
dc.creatorSwart J.W.
dc.creatorFilho J.M.
dc.creatorSouza Filho A.G.
dc.creatorMoshkalev S.A.
dc.date2014
dc.date2015-06-25T17:54:27Z
dc.date2015-11-26T14:33:41Z
dc.date2015-06-25T17:54:27Z
dc.date2015-11-26T14:33:41Z
dc.date.accessioned2018-03-28T21:37:05Z
dc.date.available2018-03-28T21:37:05Z
dc.identifier
dc.identifierJournal Of Integrated Circuits And Systems. Brazilian Microelectronics Society, v. 9, n. 2, p. 103 - 109, 2014.
dc.identifier18071953
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919770789&partnerID=40&md5=deb7c31f021349726f469965a58a4107
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86684
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86684
dc.identifier2-s2.0-84919770789
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247917
dc.descriptionA new approach to improve the electrical and thermal contacts between multi-walled carbon nanotubes and metallic electrodes was developed by using spatially localized laser heating coupled with a micro Raman equipment. After the deposition by dielectrophoresis, the nanotubes were heated in ambient atmosphere by a focused laser beam in order to improve the electrical contacts of the nanostructures with different electrodes (W, Ti and Au) and also to excite the Raman signal of the nanotubes. The changes in the vibrational frequencies of the Raman bands of the nanotubes provides a real time feedback of the treatment conditions allowing to estimate the local temperature, which is used for adjusting the parameters of treatment. Laser treatment tests were performed in a single step (single exposition of the sample to laser) or gradually (successive expositions of the sample to laser, with gradual increase of the used laser power density) and better results were obtained for the gradual treatment tests. Laser treatment of contacts carried out after the calibration of the treatment parameters, showed a reduction of up to three orders of magnitude in the electrical resistance of the devices. The main advantage of this method, when compared with traditional and rapid thermal annealing, is that the thermal treatment is localized in a small region, thus allowing the processing of circuits composed of different materials, whereby each process can be individually controlled.
dc.description9
dc.description2
dc.description103
dc.description109
dc.descriptionLéonard, J.F., Talin, A.A., Electrical contacts to one-and two-dimensional nanomaterials (2011) Nature Nanotechnol, 6 (12), pp. 773-783. , Dec
dc.descriptionRobinson, J.A., Labella, M., Zhu, M., Hollander, M., Kasarda, R., Hughes, Z., Trumbull, K., Snyder, D., Contacting graphene (2011) Appl. Phys. Lett, 98 (5), pp. 053103-1-053103-3. , Jan
dc.descriptionXia, F., Perebeinos, V., Lin, Y.-M., Wu, Y., Avouris, P., The origins and limits of metal-graphene junction resistance (2011) Nature Nanotechnol, 6 (3), pp. 179-184. , Mar
dc.descriptionKnoch, J., Chen, Z., Appenzeller, J., Properties of metal-graphene contacts (2012) IEEE Trans. Nanotechnol, 11 (3), pp. 513-519. , May
dc.descriptionKrupke, R., Hennrich, F., Kappes, M.M., Löhneysen, H.V., Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes (2004) Nano Lett, 4 (8), pp. 1395-1399. , Jul
dc.descriptionLeon, J., Flacker, A., Vaz, A.R., Verissimo, C., Moraes, M.B., Moshkalev, S.A., Electrical characterization of multi-walled carbon nanotubes (2010) J. Nanoscience and Nanotechnol, 10 (9), pp. 6234-6239. , Sep
dc.descriptionGelamo, R.V., Rouxinol, F.P., Verissimo, C., Vaz, A.R., Moraes, M.A.B., Moshkalev, S.A., Low-temperature gas and pressure sensor based on multi-wall carbon nanotubes decorated with Ti nanoparticles (2009) Chem. Phys. Lett, 482 (4-6), pp. 302-306
dc.descriptionSavu, R., Silveira, J.V., Flacker, A., Vaz, A.R., Joanni, E., Pinto, A.C., Gobbi, A.L., Moshkalev, S.A., Micro-reactors for characterization of nanostructure-based sensors (2012) Rev. Sci. Instrum, 83 (5), pp. 055104-1-055104-6. , May
dc.descriptionMoshkalev, S.A., Leon, J., Verissimo, C., Vaz, A.R., Flacker, A., Moraes, M.B., Swart, J.W., Controlled deposition and electrical characterization of multi-wall carbon nanotubes (2008) J. Nano Research, 3, pp. 25-32. , Oct
dc.descriptionLee, J.-O., Park, C., Kim, J.-J., Kim, J., Park, J.W., Yoo, K.-H., Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method (2000) J. Phys. D: Appl. Phys, 33 (16), pp. 1953-1956. , Aug
dc.descriptionWoo, Y., Duesberg, G.S., Roth, S., Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing (2007) Nanotechnol, 18 (9), pp. 095203-1-095203-7. , Mar
dc.descriptionDong, L., Youkey, S., Bush, J., Jiao, J., Dubin, V.M., Chebiam, R.V., Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes (2007) J. Appl. Phys, 101 (2), pp. 024320-1-024320-7. , Jan
dc.descriptionYoon, Y.H., Yi, S.-M., Yim, J.-R., Lee, J.-H., Rozgonyi, G., Joo, Y.-C., Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films (2010) Microelectronic Engineering, 87 (11), pp. 2230-2233. , Nov
dc.descriptionMisra, N., Xu, L., Pan, Y., Cheung, N., Grigoropoulos, C.P., Excimer laser annealing of silicon nanowires (2007) Appl. Phys. Lett, 90 (11), pp. 1-3. , Mar
dc.descriptionWankerl, A., Schremer, A.T., Shealy, J.R., Laser stimulated selective area growth of quantum dots (1998) Appl. Phys. Lett, 72 (25), pp. 3332-3334. , Jun
dc.descriptionOlevik, D., Soldatov, A.V., Dossot, M., Vigolo, B., Humbert, B., McRae, E., Stability of carbon nanotubes to laser irradiation probed by Raman spectroscopy (2008) Phys. Stat. Sol. B, 245 (10), pp. 2212-2215. , Oct
dc.descriptionCorio, P., Santos, P.S., Pimenta, M.A., Dresselhaus, M.S., Evolution of the molecular structure of metallic and semiconducting carbon nanotubes under laser irradiation (2002) Chem. Phys. Lett, 360 (5-6), pp. 557-564. , Jul
dc.descriptionLee, J., Park, J., Yi, W., Improved Field Emission Currents of Carbon Nanotubes after Laser Irradiation (2006) Bull. Korean Chem. Soc, 27 (10), pp. 1651-1654. , Oct
dc.descriptionOhsumi, K., Honda, T., Kim, W.S., Oh, C.B., Murakami, K., Abo, S., Wakaya, F., Okuda, S., KrF laser surface treatment of carbon nanotube cathodes with and without reactive ion etching (2007) J. Vac. Sci. Technol. B, 25 (2), pp. 557-560. , Mar
dc.descriptionRochanachirapar, W., Murakami, K., Yamasaki, N., Abo, S., Wakaya, F., Takai, M., Hosono, A., Okuda, S., Laser surface treatment of carbon nanotube cathodes for field emission displays with large diagonal size” (2005) J. Vac. Sci. Technol. B, 23 (2), pp. 765-768. , Mar
dc.descriptionHonda, T., Oh, C.B., Murakami, K., Kim, W.S., Abo, S., Wakaya, F., Takai, M., Surface treatment of carbon nanotube cathodes with glass fillers using KrF excimer laser for field-emission displays (2006) J. Vac. Sci. Technol. B, 24 (2), pp. 1013-1016. , Mar
dc.descriptionHuang, F.M., Yue, K.T., Tan, P.H., Zhang, S.L., Shi, Z.J., Zhou, X.H., Gu, Z.N., Temperature dependence of the Raman spectra of car-bon nanotubes (1998) J. Appl. Phys, 84 (7), pp. 4022-4024. , Oct
dc.descriptionSilveira, J.V., Savu, R., Canesqui, M.A., Alves, O.L., Mendes Filho, J., Swart, J.W., Souza Filho, A.G., Moshkalev, S.A., Improvement of electrical and thermal contacts between carbon nanotubes and metallic electrodes by laser annealing (2014) J. Nanoelectron. Optoeletron, 9. , accepted
dc.descriptionErmakov, V.A., Alaferdov, A.V., Vaz, A.R., Baranov, A.V., Moshkalev, S.A., Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals (2013) Nanotechnol, 24 (15), pp. 1-10. , Apr
dc.descriptionMoshkalev, S.A., Ermakov, V.A., Vaz, A.R., Alaferdov, A.V., Savu, R., Silveira, J.V., Souza Filho, A.G., Formation of reliable electrical and thermal contacts between graphene and metal electrodes by laser annealing (2014) Microelect. Eng, 121, pp. 55-58. , Jun
dc.descriptionVenugopal, A., Colombo, L., Vogel, E.M., Contact Resistance in Few and Multilayer Graphene Devices (2010) Applied Physics Letters, 96, pp. 013512-013513
dc.descriptionLee, S., Wijesinghe, N., Diaz-Pinto, C., Peng, H., Hot electron transport in suspended multilayer graphene (2010) Physical Review B, 82, pp. 045411-045416
dc.languageen
dc.publisherBrazilian Microelectronics Society
dc.relationJournal of Integrated Circuits and Systems
dc.rightsfechado
dc.sourceScopus
dc.titleLocal Laser Annealing Of Contacts Between Mwcnts And Metallic Electrodes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución