Actas de congresos
Using An Evolutionary Denoising Approach To Improve The Robustness Of Chaotic Synchronization
Registro en:
9783902823021
Ifac Proceedings Volumes (ifac-papersonline). , v. , n. , p. 35 - 39, 2012.
14746670
10.3182/20120620-3-MX-3012.00027
2-s2.0-84880987529
Autor
Soriano D.C.
Abib G.A.
Eisencraft M.
Attux R.
Suyama R.
Institución
Resumen
Chaotic synchronization in master-slave networks has been extensively studied in the last years, with a relevant impact in application domains like communication systems and the modeling of neuronal and other biomedical signals and systems. Many recent papers have shown that chaotic synchronization is easily lost when there is additive noise in the link between master and slave. This lack of robustness can simply derail the use of chaos-based communication systems in non-ideal environments. In the present work we employ a bio-inspired optimization technique to increase the signal-to-noise-ratio of the chaotic signal that arrives in the slave node of a master-slave discrete-time network and we show that this technique can improve the robustness of the chaotic synchronization to noise. © 2012 IFAC.
35 39 Asociacion de Mexico de Control Automatico (AMCA),IFAC TC Adaptive and Learning Systems,Division de Matematicas Aplicadas at IPICyT (DMAp-IPICYT) Agarwal, R.P., (1992) Difference Equations and Inequalities: Theory, Methods, and Applications, , M. Dekker, New York Baptista, M.S., Macau, E.E., Grebogi, C., Lai, Y.C., Rosa, E., Integrated chaotic communication scheme (2000) Phys. Rev. E, 62 (4), pp. 4835-4845. , doi: 10.1103/PhysRevE.62.4835 Carroll, T., Pecora, L., Synchronizing chaotic circuits (1991) Circuits and Systems, 38 (4), pp. 453-456. , IEEE Transactions on doi:10.1109/31.75404 De Castro, L.N., (2006) Fundamentals of Natural Computing, , Chapman & Hall De Castro, L.N., Zuben, F.J.V., Learning and optimization using the clonal selection principle (2002) IEEE Transactions on Evolutionary Computation, 6, pp. 239-251 De Castro, L., Timmis, J., (2002) Artificial Immune Systems: A New Computational Intelligence Approach, , Springer Verlag Eisencraft, M., Batista, A., Discrete-time chaotic systems synchronization performance under additive noise (2011) Signal Processing, 91 (8), pp. 2127-2131. , doi: 10.1016/j.sigpro.2011.01.021 Eisencraft, M., Fanganiello, R., Baccala, L., Synchronization of discrete-time chaotic systems in bandlimited channels (2009) Mathematical Problems in Engineering, 2009. , doi:10.1155/2009/207971 Eisencraft, M., Fanganiello, R., Grzybowski, J., Soriano, D., Attux, R., Batista, A., Macau, E., Yoneyama, T., Chaos-based communication systems in non-ideal channels (2011) Communications in Nonlinear Science and Numerical Simulation, , doi:10.1016/j.cnsns.2011.05.030 Faure, P., Korn, H., Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation (2001) Comptes Rendus de L Academie des Sciences Serie Iii-Sciences de la Vie-Life Sciences, 324 (9), pp. 773-793. , doi:10.1016/S0764-4469(01)01377-4 Gao, F., Lee, J.J., Li, Z., Tong, H., Lü, X., Parameter estimation for chaotic system with initial random noises by particle swarm optimization (2009) Chaos, Solitons and Fractals, 42, pp. 1286-1291 Grzybowski, J., Eisencraft, M., Macau, E., Chaos-based communication systems: Current trends and challenges (2011) Applications of Chaos and Nonlinear Dynamics in Engineering, 1, pp. 203-230. , S. Banerjee, M. Mitra, and L. Rondoni (eds.) Volume 71 of Understanding Complex Systems Springer Hénon, M., A two-dimensional mapping with a strange attractor (1976) Comm. Math. Phys., 50 (1), pp. 69-77 Koh, C.L., Ushio, T., Digital communication method based on m-synchronized chaotic systems (1997) Circuits and Systems I: Fundamental Theory and Applications, 44 (5), pp. 383-390. , IEEE Transactions on doi: 10.1109/81.572334 Pecora, L.M., Carroll, T.L., Synchronization in chaotic systems (1990) Phys. Rev. Lett., 64 (8), pp. 821-824. , doi:10.1103/PhysRevLett.64.821 Pecora, L.M., Carroll, T.L., Driving systems with chaotic signals (1991) Phys. Rev. A, 44 (4), pp. 2374-2383. , doi:10.1103/PhysRevA.44.2374 Qi, G.X., Huang, H.B., Chen, L., Wang, H.J., Shen, C.K., Fast synchronization in neuronal networks (2008) EPL, 82 (3). , doi:10.1209/0295-5075/82/38003 Rulkov, N.F., Tsimring, L.S., Synchronization methods for communication with chaos over band-limited channels (1999) International Journal of Circuit Theory and Applications, 27, pp. 555-567 Soriano, D., Attux, R., Romano, J., Loiola, M., Suyama, R., Denoising chaotic time series using an evolutionary state estimation approach (2011) Computational Intelligence in Control and Automation (CICA), pp. 116-122. , 2011 IEEE Symposium on doi: 10.1109/CICA.2011.5945756 Strogatz, S., (2004) Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life, , Hyperion Books Tang, G., Xu, K., Jiang, L., Synchronization in a chaotic neural network with time delay depending on the spatial distance between neurons (2011) Physical Review E, 84 (4 PART 2). , doi:10.1103/PhysRevE.84.046207 Tôrres, L.A., Discrete-time dynamic systems synchronization: Information transmission and model matching (2007) Physica D: Nonlinear Phenomena, 228 (1), pp. 31-39. , doi:10.1016/j.physd.2007.02.002 Williams, C., Chaotic communications over radio channels (2001) Circuits and Systems I: Fundamental Theory and Applications, 48 (12), pp. 1394-1404. , IEEE Transactions on doi:10.1109/TCSI.2001.972846 Wu, C.W., Chua, L.O., A simple way to synchronize chaotic systems with applications to secure communication systems (1993) International Journal of Bifurcation and Chaos, 3 (6), pp. 1619-1627 Zelinka, I., Celinkovsky, S., Richter, H., Chen, G., (2010) Evolutionary Algorithms and Chaotic Systems, , Springer