dc.creatorInocente-Junior N.R.
dc.creatorNobrega E.G.O.
dc.creatorMechbal N.
dc.date2012
dc.date2015-06-29T13:23:36Z
dc.date2015-11-26T14:33:37Z
dc.date2015-06-29T13:23:36Z
dc.date2015-11-26T14:33:37Z
dc.date.accessioned2018-03-28T21:37:02Z
dc.date.available2018-03-28T21:37:02Z
dc.identifier9783902823090
dc.identifierIfac Proceedings Volumes (ifac-papersonline). , v. 8, n. PART 1, p. 72 - 77, 2012.
dc.identifier14746670
dc.identifier10.3182/20120829-3-MX-2028.00046
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84867063837&partnerID=40&md5=b9916c5bfa133c92d47754261ab0ae58
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97529
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97529
dc.identifier2-s2.0-84867063837
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247907
dc.descriptionPrecise and automatic identification of structural properties is a vital step toward detection and localization of damage in structures. However, even simple structures may present a complex dynamical behavior, and a large number of poles for a given frequency interval. This complexity leads often to numerical problems, like spurious modes in the identified model. In this article it is proposed a novel frequency-windowed subspace identification method, suitable to perform reduced-order identification, using band-limited excitation. The proposed methodology is employed to identify natural frequencies and damage detection of an experimental bench. Experimental results show its effectiveness to improve model identification. It is also shown that the frequency-windowing subspace identification is able to enhance damage detection, by generating more accurate damage indexes. © 2012 IFAC.
dc.description8
dc.descriptionPART 1
dc.description72
dc.description77
dc.descriptionInt. Fed. Autom. Control Tech. Comm. Fault Detect.,,Superv. Saf. Tech. Process.,IFAC Tech. Comm. Model., Identif. Signal Process. (TC 1.1),IFAC Technical Committee on Mechatronic Systems (TC 4.2),IFAC Technical Committee on Chemical Process,Control (TC 6.1)
dc.descriptionBalageas, D., Fritzen, C.P., Güemes, A., (2006) Structural Health Monitoring, 496p. , London: ISTE, 2006
dc.descriptionBasseville, M., Benveniste, A., Goursat, M., Hermans, L., Mevel, L., Van Der Auwerauer, H., Output-only subspace-based structural identification: From theory to industrial testing (2001) Transactions of ASME, 123, pp. 668-676
dc.descriptionBasseville, M., Mevel, L., Goursat, M., Statistical model-based damage detection and localization: Subspace-based residuals and damage-to-noise sensitivity ratios (2004) Journal of Sound and Vibration, 275, pp. 769-794
dc.descriptionChang, F.-K., Structural health monitoring: Condition-based maintenance (2011) Proceedings of 8 th International Workshop on Structural Health Monitoring, , Stanford, USA
dc.descriptionEwins, D.J., (2000) Modal Testing: Theory, Practice and Application, , Research Studies Press ltd, Philadelphia
dc.descriptionFritzen, C.P., Kraemer, P., Self-diagnosis of smart structures based on dynamical properties (2009) Mechanical Systems and Signal Processing, 23, pp. 1830-1845
dc.descriptionInocente-Junior, N.R., Nóbrega, E.G.O., Mechbal, N., Realtime structural health monitoring using parity residue analysis (2009) International Congress of Mechanical Engineering, , Gramado, RS, Brasil
dc.descriptionJuang, J.-N., (1994) Applied System Identification, , Prentice Hall, New Jersey
dc.descriptionKatayama, T., (2005) Subspace Methods for System Identification: A Realization Approach, , (Communications and control engineering). Springer-Verlag, London
dc.descriptionMcKelvey, T., Akçay, H., Ljung, L., Subspace-based multivariable system identification from frequency response data (1996) IEEE Trans on Automatic Control, 41, pp. 960-978
dc.descriptionMercère, G., Lecoeuche, S., Lovera, M., Recursive subspace identification based on instrumental variable unconstrained quadratic optimization (2004) Int J Adapt Control Signal Process, 18 (9-10), pp. 771-797
dc.descriptionPeeters, B., De Roeck, G., Reference-based stochastic subspace identification for output-only modal analysis (1999) Mech Sys Sig Proc, 13 (6), pp. 855-878
dc.descriptionSaeed, K., Mechbal, N., Coffignal, G., Vergé, M., Subspace-based damage localization using artificial neural network 18th mediterranean conference on control and automation (2010) MED'10 - Conference Proceedings, pp. 563-568
dc.descriptionSohn, H., Farrar, C.R., Hemez, F.M., Czarnecki, J.J., Shunk, D.D., Stinemates, D.W., Nadler, B.R.A., Review of structural health monitoring literature: 1996-2001 (2003) Los Alamos National Laboratory Report, LA-13976-MS
dc.descriptionSu, Z.Q., Ye, L., (2009) Identification of Damage Using Lamb Waves, , Springer
dc.descriptionVan Der Auweraer, H., Leurs, W., Mas, P., Hermans, L., Modal parameter estimation from inconsistent data sets (2000) Proc Int Modal
dc.descriptionVan Overschee, P., De Moor, B., (1996) Subspace Identification for Linear Systems, , Kluwer Academic Press, Boston
dc.descriptionWorden, K., Dulieu-Barton, J.M., An overview of intelligent fault detection in systems and structures (2004) Structural Health Monitoring, 3 (1), pp. 85-98
dc.descriptionWorden, K., Farrar, C.R., Manson, G., Park, G., The fundamental axioms of structural health monitoring (2007) Proc. R. Soc. A, 463, pp. 1639-1664
dc.languageen
dc.publisher
dc.relationIFAC Proceedings Volumes (IFAC-PapersOnline)
dc.rightsfechado
dc.sourceScopus
dc.titleImproved Subspace-based Method Applied To Structural Damage Detection
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución