Artículos de revistas
Robust Stability Of Neutral Systems With Time-varying Delays [estabilidade Robusta De Sistemas Neutrais Com Atrasos Variantes No Tempo]
Registro en:
Controle Y Automacao. , v. 18, n. 4, p. 434 - 446, 2007.
1031759
2-s2.0-39749133601
Autor
Leite V.J.S.
Castelan E.B.
Peres P.L.D.
Tarbouriech S.
Institución
Resumen
Sufficient linear matrix inequality conditions are given for robust stability analysis of linear uncertain neutral systems, where it is assumed that the vector of states has time-varying delays. All system matrices are supposed to be time invariant, uncertain but belonging to a polytope with known vertices. The robust stability of the uncertain neutral system is assured by means of a parameter dependent Lyapunov-Krasovskii functional. Additionally, it is shown how robust stability conditions for uncertain continuous-time systems with and without state delays can be recovered from the conditions proposed in the paper. Numerical examples illustrate the obtained results. 18 4 434 446 Barmish, B.R., Necessary and sufficient conditions for quadratic stabilizability of an uncertain system (1985) Journal of Optimization Theory and Applications, 46 (4), pp. 399-408 Bellen, A., Guglielmi, N. e Ruehli, A. E. (1999). Methods for linear systems of circuit delay differential equations of neutral type, IEEE Transactions on Circuits and Systems Part I: Fundamental Theory and Applications 46(1): 212-216Bin, Y., Ruijun, Z., Tao, L., Delay-dependent stability criterion for a class of neutral time-delay systems (2003) Proceedings of the 2003 American Control Conference, pp. 2694-2696. , Denver, CO, pp Bliman, P.-A., Lyapunov equation for the stability of linear delay systems of retarded and neutral type (2002) IEEE Transactions on Automatic Control, 47 (2), pp. 327-335 Cao, D.Q., He, P., Stability criteria of linear neutral systems with a single delay (2004) Applied Mathematics and Computation, 148 (1), pp. 135-143 Chen, J.-D., New stability criteria for a class of neutral systems with discrete and distributed time-delays: An LMI approach (2003) Applied Mathematics and Computation, 150 (3), pp. 719-736 Chen, J.-D., Robust control for uncertain neutral systems with time-delays in state and control input via LMl and GAs (2004) Applied Mathematics and Computation, 157 (2), pp. 535-548 Cullum, J., Ruehli, A. e Zhang, T. (2000). A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEED models with retardation, IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal Processing 47(4): 261-273de Oliveira, M.C., Bernussou, J., Geromel, J.C., A new discrete-time robust stability condition (1999) Systems & Control Letters, 37 (4), pp. 261-265 de Oliveira, M.C., Skelton, R.E., Stability tests for constrained linear systems (2001) Lecture Notes in Control and Information Science, 268, pp. 241-257. , S. O. Reza Moheimani ed, Perspectives in Robust Control, of, Springer-Verlag, New York, pp Dugard, L., Verriest, E.I., (1997) Stability and Control of Time-delay Systems, , Springer-Verlag, Berlin, Germany El'sgol'ts, L.E., (1966) Introduction to the theory of differential equations with deviating arguments, , Holden-Day, Inc, San Francisco, USA Fridman, E., New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems (2001) Systems & Control Letters, 43 (4), pp. 309-319 Fu, X., Controllability of abstract neutral functional differential systems with unbounded delay (2004) Applied Mathematics and Computation, 151 (2), pp. 299-314 Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M., (1995) LMI Control Toolbox User's Guide, , The Math Works Inc, Natick, MA Gu, K., Kharitonov, V.L., Chen, J., (2003) Stability of Time-delay Systems, Control Engineering, , Birkhäuser, Boston, MA Gu, K., Niculescu, S., Survey on recent results in the stability and control of time-delay systems (2003) Journal of Dynamic Systems, Measurement and Control - Transactions of ASME, 125, pp. 125-165 Gu, K., Niculescu, S.-I., Further remarks on additional dynamics in various model transformations of linear delay systems (2001) IEEE Transactions on Automatic Control, 46 (3), pp. 497-500 Hale, J., (1977) Theory of Functional Differential Equations, , Springer-Verlag, New York Hale, J., Lunel, S.M.V., (1993) Introduction to Functional Differential Equations, , Springer-Verlag, New York Han, Q.-L., Robust stability of uncertain delay-differential systems of neutral type (2002) Automatica, 38 (4), pp. 719-723 Han, Q.-L., A descriptor system approach to robust stability of uncertain neutral system with discrete and distributed delays (2004) Automatica, 40 (10), pp. 1791-1796 Ivǎnescu, D., Niculescu, S.-I., Dugard, L., Dion, J.-M., Verriest, E.I., On delay-dependent stability for linear neutral systems (2003) Automatica, 39 (2), pp. 255-261 Kao, C.-Y., Rantzer, A., Stability criteria for systems with bounded uncertain time-varying delay (2003) Proceedings of the 2003 European Control Conference, , Cambridge, UK Kolmanovskii, V.B., Niculescu, S.I., Richard, J.P., On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems (1999) International Journal of Control, 72 (4), pp. 374-384 Kolmanovskii, V.B., Richard, J.P., Stability of some linear systems with delays (1999) IEEE Transactions on Automatic Control, 44 (5), pp. 984-989 Kolmanovskii, V., Myshkis, A., (1992) Applied Theory of Functional Differential Equations, , Kluwer Academic Publishers, Dordrecht Kolmanovskii, V., Myshkis, A., (1998) Introduction to the Theory and Applications of Functional Differential Equations, , Kluwer Academic Publishers, Dordrecht Leite, V.J.S., Montagner, V.F., de Oliveira, P.J., Oliveira, R.C.L.F., Ramos, D.C.W., Peres, P.L.D., Estabilidade robusta de sistemas lineares através de desigualdades matriciais lineares (2004) SBA Controle & Automação, 15 (1), pp. 24-40 Leite, V.J.S., Peres, P.L.D., An improved LMI condition for robust D-stability of uncertain polytopic systems (2003) IEEE Transactions on Automatic Control, 48 (3), pp. 500-504 Leite, V. J. S., Peres, P. L. D. e Tarbouriech, S. (2003). Less conservative time-delay independent LMI conditions for continuous-time polytopic systems, Proceedings of the 4th IFAC International Workshop on Linear Time Delay Systems, Rocquencourt, France, in CD-romMahmoud, M.S., Robust Control and Filtering for Time-Delay Systems (2000) Control Engineering Series, , Marcel Dekker, Inc, New York Malek-Zavarei, M., Jamshidi, M., (1987) Time-Delay Systems: Analysis, Optimization and Applications, , North-Holland, Amsterdam, The Netherlands Niculescu, S.-I., Delay Effects on Stability: A Robust Control Approach (2001) Lecture Notes in Control and Information Sciences, 269. , of, Springer-Verlag, London Park, J.-H., A new delay-dependent criterion for neutral systems with multiple delays (2001) Journal of Computational and Applied Mathematics, 136 (1-2), pp. 177-184 Park, J.H., Simple criterion fot asymptotic stability of interval neutral delay-differential systems (2003) Applied Mathematics Letters, 16 (7), pp. 1063-1068 Park, J.H., Kwon, O., Won, S., LMI approach to robust H∞ filtering for neutral delay differential systems (2004) Applied Mathematics and Computation, 150 (1), pp. 235-244 Park, J.H., Won, S., Stability analysis for neutral delay-differential systems (2000) Journal of The Franklin Institute, 337 (1), pp. 1-9 Peaucelle, D., Arzelier, D., Bachelier, O., Bernussou, J., A new robust Instability condition for real convex polytopic uncertainty (2000) Systems & Control Letters, 40 (1), pp. 21-30 Peres, P. L. D., Tarbouriech, S., Garcia, G. e Leite, V. J. S. (2003). Robust stability of time-delay continuous-time systems in polytopic domains, Proceedings of the 2003 European Control Conference, Cambridge, UK. in CD-romRamos, D.C.W., Peres, P.L.D., A less conservative LMI condition for the robust stability of discrete-time uncertain systems (2001) Systems & Control Letters, 43 (5), pp. 371-378 Ramos, D.C.W., Peres, P.L.D., An LMI condition for the robust stability of uncertain continuous-time linear systems (2002) IEEE Transactions on Automatic Control, 47 (4), pp. 675-678 Richard, J.-P., Time-delay systems: An overview of some recent advances and open problems (2003) Automatica, 39 (10), pp. 1667-1694 Skorodinskii, V.I., Iterational method of construction of Lyapunov-Krasovskii functionals for linear systems with delay (1990) Automation and Remote Control, 51 (9), pp. 1205-1212 Verriest, E.I., Robust stability and adaptive control of time-varying neutral systems (1999) Proceedings of the 38th IEEE Conference on Decision and Control, pp. 4690-4695. , Phoenix, AZ, pp Vieira, A., Kailath, T., On another approach to the Schur-Cohn criterion (1977) IEEE Transactions on Circuits and Systems, CAS-24, pp. 218-220 Xu, S., Lam, J., Yang, C., Verriest, E.I., An LMI approach to guaranteed cost control for uncertain linear neutral delay systems (2003) International Journal of Robust and Nonlinear Control, 13 (1), pp. 35-53 Yue, D. e Han, Q.-L. (2004). A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model, IEEE Transactions on Circuits and Systems Part II: Analog and Digital Signal Processing 51(12): 685-689Zhang, J., Knospe, C., Tsiotras, P., Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions (2001) IEEE Transactions on Automatic Control, 46 (3), pp. 482-486