dc.creatorCampello R.J.G.B.
dc.creatorOliveira G.H.C.
dc.creatorAmaral W.C.
dc.date2007
dc.date2015-06-30T18:44:55Z
dc.date2015-11-26T14:33:19Z
dc.date2015-06-30T18:44:55Z
dc.date2015-11-26T14:33:19Z
dc.date.accessioned2018-03-28T21:36:44Z
dc.date.available2018-03-28T21:36:44Z
dc.identifier
dc.identifierControle Y Automacao. , v. 18, n. 3, p. 301 - 321, 2007.
dc.identifier1031759
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-39749135512&partnerID=40&md5=ad35712472a8be9282d3fda02dc52cc9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104611
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104611
dc.identifier2-s2.0-39749135512
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247833
dc.descriptionIn this paper, an overview about the identification of dynamic systems using orthonormal basis function models, such as those based on Laguerre and Kautz functions, is presented. The mathematical foundations of these models as well as their advantages and limitations are discussed within the contexts of linear, robust, and nonlinear identification. The discussions comprise a broad bibliographical survey on the subject and a comparative analysis involving some specific model realizations, namely, linear, Volterra, fuzzy, and neural models within the orthonormal basis function framework. Theoretical and practical issues regarding the identification of these models are also presented and illustrated by means of two case studies related to a polymerization process.
dc.description18
dc.description3
dc.description301
dc.description321
dc.descriptionAguirre, L.A., (2004) Introdução à Identificação de Sistemas: Técnicas Lineares e Não Lineares Aplicadas a Sistemas Reais, , 2 edn, Editora UFMG
dc.descriptionAguirre, L.A., Correa, M.V., Cassini, C., Nonlinearities in NARX polynomial models: Representation and estimation (2002) IEE Proc. Control Theory and Applications, 149, pp. 343-348
dc.descriptionAlataris, K., Berger, T.W., Marmarelis, V.Z., A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs (2000) Neural Networks, 13, pp. 255-266
dc.description(2000) Nonlinear Model Predictive Control, , Allgower, F. and Zheng, A, eds, Birkhauser Verlag
dc.descriptionArto, V., Hannu, P., Halme, A., Modeling of chromatographic separation process with Wiener-MLP representation (2001) Journal of Process Control, 11, pp. 443-458
dc.descriptionBabuška, R., (1998) Fuzzy Modeling for Control, , Kluwer Academic Publishers
dc.descriptionBack, A.D., Tsoi, A.C., Nonlinear system identification using discrete Laguerre functions (1996) Journal of Systems Engineering, 6, pp. 194-207
dc.descriptionBalestrino, A., Caiti, A., Zanobini, G., Identification of Wiener-type nonlinear systems by Laguerre filters and neural networks (1999) Proc. 14th International Federation of Automatic Control (IFAC) World Congress, pp. 433-438. , Beijing/China, pp
dc.descriptionBillings, S.A., Identification of nonlinear systems - a survey (1980) IEE Proc. Pt D, 127 (6), pp. 272-285
dc.descriptionBoyd, S., Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series (1985) IEEE Trans. on Circuits and Systems, 32 (11), pp. 1150-1161
dc.descriptionBraga, A.P., Carvalho, A.C.P.L.F., Ludemir, T.B., (2000) Redes Neurais Artificiais: Teoria e Aplicações, , LTC
dc.descriptionBroome, P.W., Discrete orthonormal sequences (1965) Journal of the Association for Computing Machinery, 12 (2), pp. 151-168
dc.descriptionBroomhead, D.S., Lowe, D., Multivariate functional interpolation and adaptive networks (1988) Complex Systems, 2, pp. 321-355
dc.descriptionCamacho, E.F., Bordons, C., (1999) Model Predictive Control, , Springer-Verlag
dc.descriptionCampello, R.J.G.B., (2002) Arquiteturas e Metodologias para Modelagem e Controle de Sistemas Complexos utilizando Ferramentas Clássicas e Modernas, , PhD thesis, DCA/FEEC/UNICAMP, Campinas/SP, Brasil
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Equivalência entre modelos nebulosos e redes neurais (1999) Anais IV Simpósio Brasileiro de Automação Inteligente, pp. 208-212. , São Paulo/Brasil, pp
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control (2002) Proc. 11th IEEE Internat. Conference on Fuzzy Systems, pp. 1399-1404. , Honolulu/USA, pp
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., (2001) Optimal Laguerre series expansion of discrete Volterra models, Proc. European Control Conference, pp. 372-377. , Porto/Portugal, pp
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., Desenvolvimento ótimo de modelos de Volterra em funções ortonormais de Laguerre (2002) Anais XIV Congresso Brasileiro de Automática, pp. 128-133. , Natal/Brasil, pp
dc.descriptionCampello, R.J.G.B., Amaral, W.C., Favier, G., A note on the optimal expansion of Volterra models using Laguerre functions (2006) Automatica, 42, pp. 689-693
dc.descriptionCampello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions (2003) Proc. of the 13th IFAC Symposium on System Identification, pp. 1844-1849. , Rotterdam/The Netherlands, pp
dc.descriptionCampello, R.J.G.B., Favier, G., Amaral, W.C., Optimal expansions of discrete-time Volterra models using Laguerre functions (2004) Automatica, 4 (0), pp. 815-822
dc.descriptionCampello, R. J. G. B., Meleiro, L. A. C. and Amaral, W. C. (2004). Control of a bioprocess using orthonormal basis function fuzzy models, Proc. 13th IEEE Internat. Conference on Fuzzy Systems, Budapest/Hungary, pp. 801-806Campello, R.J.G.B., Oliveira, G.H.C., Modelos não lineares (2007) Enciclopédia de Automática, 3. , L. A. Aguirre, A. P. Alves da Silva, M. F. M. Campos and W. C. Amaral eds, Cap. 4, Edgard Blücher
dc.descriptionCampello, R. J. G. B., Oliveira, G. H. C., Von Zuben, F. J. and Amaral, W. C. (1999). Redes neurais com base de funções ortonormais, Anais IV Simpósio Brasileiro de Automação Inteligente, São Paulo/Brasil, pp. 213-218Campello, R.J.G.B., Von Zuben, F.J., Amaral, W.C., Meleiro, L.A.C., Maciel Filho, R., Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control (2003) Chemical Engineering Science, 58, pp. 4259-4270
dc.descriptionCho, K.B., Wang, B.H., Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction (1996) Fuzzy Sets and Systems, 83, pp. 325-339
dc.description(1994) Advances in Model Based Predictive Control, , Clarke, D. W, ed, Oxford University Press
dc.descriptionCorrêa, M.V., Aguirre, L.A., Identificação não-linear caixa-cinza - Uma revisão e novos resultados (2004) Controle & Automação, 15, pp. 109-126
dc.descriptionda Rosa, A., (2005) Desenvolvimento de modelos discretos de Volterra usando funções de Kautz, , Master's thesis, DCA/FEEC/UNICAMP, Campinas/SP, Brasil
dc.descriptionda Rosa, A., Amaral, W.C., Campello, R.J.G.B., Desenvolvimento de modelos de Volterra usando funções de Kautz e sua aplicação à modelagem de um sistema de levitação magnética (2006) Anais do Congresso Brasileiro de Automática, pp. 274-279. , Salvador/Brasil, pp
dc.descriptionda Rosa, A., Campello, R.J.G.B., Amaral, W.C., Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions (2007) Automatica, 43 (6)
dc.descriptionda Silva, I.N., (1995) Estimação paramétrica robusta através de redes neurais artificiais, , Master's thesis, DCA/FEEC/UNICAMP, Brasil
dc.descriptionDoyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model-based control using second-order Volterra models (1995) Automática, 31, pp. 697-714
dc.descriptionDoyle III, F.J., Pearson, R.K., Ogunnaike, B.A., (2002) Identification and Control using Volterra Models, , Springer-Verlag
dc.descriptionDumont, G.A., Fu, Y., Non-linear adaptive control via Laguerre expansion of Volterra kernels (1993) Int. J. Adaptive Control and Signal Processing, 7, pp. 367-382
dc.descriptionEspinosa, J., Vandewalle, J., Wertz, V., (2004) Fuzzy Logic, Identification and Predictive Control, , SpringerVerlag
dc.descriptionEykhoff, P., (1974) System Identification: Parameter and State Estimation, , John Wiley & Sons
dc.descriptionFavier, G. and Arruda, L. V R. (1996). Review and comparison of ellipsoidal bounding algorithms, in M. Milanese (ed.), Bounding Approaches to System Identification, Plenum Press, New York, pp. 43-68Favier, G., Kibangou, A.Y., Campello, R.J.G.B., Nonlinear system modelling by means of orthonormal basis functions (2003) Proc. 2nd IEEE Int. Conference on Signal, Systems, Decision and Information Technology, Sousse/Tunisia
dc.descriptionFu, Y., Dumont, G.A., An optimum time scale for discrete Laguerre network (1993) IEEE Trans. on Automatic Control, 38 (6), pp. 934-938
dc.descriptionGarcia, C.E., Prett, D.M., Morari, M., Model predictive control: Theory and practice - a survey (1989) Automatica, 25 (3), pp. 335-348
dc.descriptionHaykin, S., (1999) Neural Networks: A Comprehensive Foundation, , 2nd edn, Prentice Hall
dc.descriptionHenson, M.A., Nonlinear model predictive control: Current status and future directions (1998) Computers and Chemical Engineering, 23, pp. 187-202
dc.descriptionHeuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H., A generalized orthonormal basis for linear dynamical systems (1995) IEEE Trans. on Automatic Control, 40, pp. 451-465
dc.descriptionHeuberger, P.S.C., Van den Hof, P.M.J., Wahlberg, B., (2005) Modelling and Identification with Rational Orthogonal Basis Functions, , Springer
dc.descriptionHunt, K.J., Haas, R., Murray-Smith, R., Extending the functional equivalence of radial basis function networks and fuzzy inference systems (1996) IEEE Trans. Neural Networks, 7, pp. 776-781
dc.descriptionKibangou, A., Favier, G., Hassani, M., Generalized orthonormal basis selection for expanding quadratic Volterra filters (2003) Proc. IFAC Symposium on System Identification, p. 11191124. , Rotterdam/The Netherlands, pp
dc.descriptionKibangou, A.Y., Favier, G., Hassani, M.M., Iterative optimization method of GOB-Volterra filters (2005) Proc. 16th International Federation of Automatic Control (IFAC) World Congress, , Prague/Czech Republic
dc.descriptionKibangou, A.Y., Favier, G., Hassani, M.M., Laguerre-Volterra filters optimization based on Laguerre spectra (2005) EURASIP Journal on Applied Signal Processing, 17, pp. 2874-2887
dc.descriptionKibangou, A.Y., Favier, G., Hassani, M.M., Selection of generalized orthonormal bases for second-order Volterra filters (2005) Signal Processing, 85, pp. 2371-2385
dc.descriptionKosko, B., (1992) Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, , Prentice Hall
dc.descriptionKosko, B., (1997) Fuzzy Engineering, , Prentice Hall
dc.descriptionLeontaritis, I., Billings, S.A., Input-output parametric models for nonlinear systems - Parts I and II (1985) Int. Journal of Control, 41 (6), pp. 303-344
dc.descriptionLjung, L., (1999) System Identification: Theory for the user, , 2nd edn, Prentice Hall
dc.descriptionMäkilä, P.M., Approximation of stable systems by Laguerre filters (1990) Automatica, 26 (2), pp. 333-345
dc.descriptionManer, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K., Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models (1996) Automatica, 32 (9), pp. 1285-1301
dc.descriptionMasnadi-Shirazi, M.A., Ahmed, N., Optimum Laguerre networks for a class of discrete-time systems (1991) IEEE Transactions on Signal Processing, 39 (9), pp. 2104-2108
dc.descriptionMedeiros, A.V., (2006) Modelagem de sistemas dinâmicos não lineares utilizando sistemas fuzzy, algoritmos genéticos e funções de base ortonormal, , Master's thesis, DCA/FEEC/UNICAMP, Campinas/SP, Brasil
dc.descriptionMedeiros, A.V., Amaral, W.C., Campello, R.J.G.B., GA optimization of generalized OBF TS fuzzy models with global and local estimation approaches (2006) Proc. 15th IEEE Internat. Conference on Fuzzy Systems, pp. 8494-8501. , Vancouver/Canada, pp
dc.descriptionMedeiros, A.V., Amaral, W.C., Campello, R.J.G.B., GA optimization of OBF TS fuzzy models with linear and non linear local models (2006) Anais Simpósio Brasileiro de Redes Neurais (SBRN), , Ribeirão Preto/Brasil
dc.descriptionMilanese, M., Belforte, G., Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors : Linear families of models and estimators (1982) IEEE Trans. on Automatic Control, 27 (2), pp. 408-414
dc.descriptionMoreira, V.D., (2006) Controle Preditivo Robusto de Sistemas Hibridos Incertos Integrando Restrições, Lógica e Dinâmica Baseada em Séries de Funções Ortonormais, , PhD thesis, DCA/FEEC/UNICAMP
dc.descriptionNelles, O., (2001) Nonlinear System Identification, , Springer-Verlag
dc.descriptionNinness, B., Gustafsson, F., Orthonormal bases for system identification (1995) Proc. 3rd European Control Conference, 1, pp. 13-18. , Rome/Italy, pp
dc.descriptionNinness, B., Gustafsson, F., A unifying construction of orthonormal bases for system identification (1997) IEEE Trans. on Automatic Control, 42, pp. 515-521
dc.descriptionNorton, J.P., Fast and robust algorithm to compute exact polytope parameter bounds (1990) Mathematics and Computers in Simulation, 32, pp. 481-493
dc.descriptionOliveira e Silva, T. A. M. (1994). Optimality conditions for truncated Laguerre networks, IEEE Trans. Signal Processing 42: 2528-2530Oliveira e Silva, T. A. M. (1995a). On the determination of the optimal pole position of Laguerre filters, IEEE Trans. Signal Processing 43: 2079-2087Oliveira e Silva, T. A. M. (1995b). Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles, IEEE Trans. Automatic Control 40: 342-346Oliveira, G.H.C., (1997) Controle Preditivo para Processos com Incertezas Estruturadas baseado em Séries de Funções Ortonormais, , PhD thesis, DCA/FEEC/UNICAMP, Campinas/SP/Brasil
dc.descriptionOliveira, G. H. C. and Amaral, W. C. (2000). Identificação e controle preditivo de processos não lineares utilizando séries de Volterra e bases de funções ortonormais, Anais XIII Congresso Brasileiro de Automática, Florianópolis/Brasil, pp. 2174-2179Oliveira, G.H.C., Amaral, W.C., Favier, G., Dumont, G., Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions (2000) Automatica, 36 (4), pp. 563-572
dc.descriptionOliveira, G. H. C., Campello, R. J. G. B. and Amaral, W. C. (1999). Fuzzy models within orthonormal basis function framework, Proc. 8th IEEE Internat. Conference on Fuzzy Systems, Seoul/Korea, pp. 957-962Oliveira, G.H.C., Campello, R.J.G.B., Amaral, W.C., Identificação e controle de processos via desenvolvimentos em séries ortonormais. Parte B: Controle preditivo (2007) Controle & Automação, 18 (3), pp. 322-336
dc.descriptionOliveira, G.H.C., Favier, G., Dumont, G., Amaral, W.C., Uncertainties identification using laguerre models with application to paper machine headbox (1998) Proc. of IEEE/IMACS Multiconference on Computational Engineering in Systems Applications - CESA, Symposium on Control Optimization and Supervision, 1, pp. 329-334. , Tunisia, pp
dc.descriptionPassino, K.M., Yurkovich, S., (1997) Fuzzy Control, , Addison Wesley
dc.descriptionRugh, W.J., (1981) Nonlinear System Theory: The Volterra/ Wiener Approach, , The Johns Hopkins University Press
dc.descriptionSchetzen, M., (1980) The Volterra and Wiener Theories of Nonlinear Systems, , John Wiley & Sons
dc.descriptionSentoni, G., Agamennoni, O., Desages, A., Romagnoli, J., Approximate models for nonlinear process control (1996) AIChE Journal, 42, pp. 2240-2250
dc.descriptionSentoni, G.B., Biegler, L.T., Guiver, J.B., Zhao, H., State-Space nonlinear process modeling: Identification and universality (1998) AIChE Journal, 44, pp. 2229-2239
dc.descriptionSjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjalmarsson, H., Juditsky, A., Nonlinear black-box modeling in system identification: A unified overview (1995) Automatica, 31, pp. 1691-1724
dc.descriptionSoeterboek, R., (1992) Predictive Control: A Unified Approach, , Prentice Hall
dc.descriptionSugeno, M., Kang, G.T., Fuzzy modelling and control of multilayer incinerator (1986) Fuzzy Sets and Systems, 18, pp. 329-346
dc.descriptionSugeno, M., Kang, G.T., Structure identification of fuzzy model (1988) Fuzzy Sets and Systems, 28, pp. 15-33
dc.descriptionSugeno, M., Tanaka, K., Successive identification of a fuzzy model and its applications to prediction of a complex system (1991) Fuzzy Sets and Systems, 42, pp. 315-334
dc.descriptionTakagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control (1985) IEEE Trans. Systems, Man and Cybernetics, SMC-15, pp. 116-132
dc.descriptionTanguy, N., Morvan, R., Vilbé, P., Calvez, L.C., Online optimization of the time scale in adaptive Laguerre-based filters (2000) IEEE Trans. on Signal Processing, 48, pp. 1184-1187
dc.descriptionTanguy, N., Morvan, R., Vilbé, P., Calvez, L.C., Pertinent choice of parameters for discrete Kautz approximation (2002) IEEE Trans. on Automatic Control, 47, pp. 783-787
dc.descriptionTanguy, N., Vilbé, P., Calvez, L.C., Optimum choice of free parameter in orthonormal approximations (1811) IEEE Trans. on Automatic Controls, , 1995
dc.descriptionVan den Hof, P.M.J., Heuberger, P.S.C., Bokor, J., System identification with generalized orthonormal basis functions (1995) Automatica, 31 (12), pp. 1821-1834
dc.descriptionVázquez, M.A.A., Agamennoni, O.E., Approximate models for nonlinear dynamical systems and their generalization properties (2001) Mathematical and Computer Modelling, 33, pp. 965-986
dc.descriptionWahlberg, B., System identification using Laguerre models (1991) IEEE Trans. on Automatic Control, 36 (5), pp. 551-562
dc.descriptionWahlberg, B., System identification using Kautz models (1994) IEEE Trans. on Automatic Control, 39 (6), pp. 1276-1282
dc.descriptionWahlberg, B., Ljung, L., Hard frequency-domain model error bounds from least-squares like identification techniques (1992) IEEE Trans. on Automatic Control, 37 (7), pp. 900-912
dc.descriptionWahlberg, B., Mäkilä, P.M., Approximation of stable linear dynamical systems using Laguerre and Kautz functions (1996) Automática, 32 (5), pp. 693-708
dc.descriptionWalter, E., Lahanier, P., Estimation of parameter bounds from bounded-error data: A survey (1990) Mathematics and Computers in simulation, 32, pp. 449-468
dc.descriptionWang, L.-X., Mendel, J.M., Fuzzy basis functions, universal approximation and orthogonal least squares learning (1992) IEEE Trans. Neural Networks, 3, pp. 807-814
dc.descriptionWiener, N., (1958) Nonlinear Problems in Random Theory, , Wiley
dc.descriptionYager, R.R., Filev, D.P., (1994) Essentials of Fuzzy Modeling and Control, , John Wiley & Sons
dc.descriptionZeng, X.-J., Singh, M.G., Approximation theory of fuzzy systems - SISO case (1994) IEEE Trans. Fuzzy Systems, 2, pp. 162-176
dc.descriptionZeng, X.-J., Singh, M.G., Approximation theory of fuzzy systems - MIMO case (1995) IEEE Trans. Fuzzy Systems, 3, pp. 219-235
dc.descriptionZervos, C.C., Dumont, G.A., Deterministic adaptive control based on Laguerre series representation (1988) Int. J. Control, 48 (6), pp. 2333-2359
dc.languagept
dc.publisher
dc.relationControle y Automacao
dc.rightsaberto
dc.sourceScopus
dc.titleIdentification And Control Of Processes Via Developments In The Orthonormal Series Part A: Identification _net Identificação E Controle De Processos Via Desenvolvimentos Em Séries Ortonormais. Parte A: Identificação
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución