dc.creatorAgulhari C.M.
dc.creatorGarcia G.
dc.creatorTarbouriech S.
dc.creatorPeres P.L.D.
dc.date2012
dc.date2015-06-29T12:58:55Z
dc.date2015-11-26T14:33:06Z
dc.date2015-06-29T12:58:55Z
dc.date2015-11-26T14:33:06Z
dc.date.accessioned2018-03-28T21:36:30Z
dc.date.available2018-03-28T21:36:30Z
dc.identifier9783902823038
dc.identifierIfac Proceedings Volumes (ifac-papersonline). , v. 7, n. PART 1, p. 678 - 683, 2012.
dc.identifier14746670
dc.identifier10.3182/20120620-3-DK-2025.00021
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866108833&partnerID=40&md5=566d38b524564942a2696e935e26be25
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97526
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97526
dc.identifier2-s2.0-84866108833
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247778
dc.descriptionA procedure to synthesize stabilizing controllers for linear time-varying periodic continuous-time systems is proposed in this paper. The controller is a periodic state-feedback gain whose construction is based on the utilization of the transition matrix of the open-loop system, and the stability of the closed-loop system is guaranteed if the system is controllable and if a observability-based condition is satisfied. The periodic state feedback gain is obtained through the numerical integration of two differential matrix equations over two periods, being the resolution of such equations considerably simpler and computationally more viable than the resolution of Ricatti differential equations considered in the standard LQR approach. Some examples illustrates the validity of the technique. © 2012 IFAC.
dc.description7
dc.descriptionPART 1
dc.description678
dc.description683
dc.descriptionDanfoss,Grundfos,DONG Energy,Vestas
dc.descriptionAgulhari, C.M., Garcia, G., Tarbouriech, S., Peres, P.L.D., An efficient numerical procedure to compute stabilizing state feedback gains for linear time-varying periodic systems (2012) Technical Report, School of Electrical and Computer Engineering, , www.dt.fee.unicamp.br/~agulhari/Reports/report_ltv_periodic_continuous. pdf
dc.descriptionAmato, F., Ariola, M., Cosentino, C., Finitetime control of linear time-varying systems via output feedback (2005) Proc. 2005 Amer. Control Conf., pp. 4722-4726. , Portland, OR, USA
dc.descriptionArtstein, Z., Stability, observability and invariance (1982) J. of Diff. Eqs., 44 (2), pp. 224-248
dc.descriptionBittanti, S., Colaneri, P., (2009) Periodic Systems: Filtering and Control, , Springer-Verlag, London
dc.descriptionBittanti, S., Colaneri, P., Guardabassi, G., Periodic solutions of periodic Riccati equations (1984) IEEE Trans. Autom. Control, 29 (7), pp. 665-667
dc.descriptionBittanti, S., Guardabassi, G., Maffezzoni, C., Silverman, L., Periodic systems: Controllability and the matrix Riccati equation (1978) SIAM J. Control Optim., 16 (1), pp. 37-40
dc.descriptionBittanti, S., Laub, A.J., Willems, J.C., (1991) The Riccati Equation, , Springer-Verlag, New York
dc.descriptionBrunovský, P., Controllability and linear closedloop controls in linear periodic systems (1969) J. of Diff. Eqs., 6 (2), pp. 296-313
dc.descriptionCalico, R.A., Wiesel, W.E., Control of timeperiodic systems (1984) J. Guidance, Control and Dyna., 7 (6), pp. 671-676
dc.descriptionCalico, R.A., Wiesel, W.E., Stabilisation of helicopter blade flapping (1986) J. of the American Helicopter Society, 31 (4), pp. 59-64
dc.descriptionChen, M.S., Huang, Y.R., Linear time-varying system control based on the inversion transformation (1997) Automatica, 33 (4), pp. 683-688
dc.descriptionChen, M.S., Kao, C.Y., Control of linear timevarying systems using forward Riccati equation (1997) J. Dyna. Syst., Measure., Control - Trans. ASME, 119, pp. 536-540
dc.descriptionFarges, C., Peaucelle, D., Arzelier, D., Daafouz, J., Robust H 2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs (2007) Syst. Control Letts., 56 (2), pp. 159-166
dc.descriptionGarcia, G., Peres, P.L.D., Tarbouriech, S., Assessing asymptotic stability of linear continuous time-varying systems by computing the envelope of all trajectories (2010) IEEE Trans. Autom. Control, 55 (4), pp. 998-1003
dc.descriptionGarcia, G., Tarbouriech, S., Bernussou, J., Finite-time stabilization of linear time-varying continuous systems (2009) IEEE Trans. Autom. Control, 54 (2), pp. 364-369
dc.descriptionHewer, G.A., Periodicity, detectability and the matrix Riccati equation (1975) SIAM J. Control, 13 (6), pp. 1235-1251
dc.descriptionKabamba, P.T., Monodromy eigenvalue assignment in linear periodic systems (1986) IEEE Trans. Autom. Control, 31 (10), pp. 950-952
dc.descriptionKailath, T., (1980) Linear Systems, , Prentice-Hall, Englewood Cliffs, NJ, USA
dc.descriptionKalman, R.E., Contributions to the theory of optimal control (1960) Boletin Soc. Mat. Mexicana, 5, pp. 102-119
dc.descriptionKern, G., To the robust stabilization problem of linear periodic systems (1986) Proc. 25th IEEE Conf. Decision Contr., pp. 1436-1438. , Athens, Greece
dc.descriptionKwon, W.H., Pearson, A.E., A modified quadratic cost problem and feedback stabilization of a linear system (1977) IEEE Trans. Autom. Control, 22 (5), pp. 838-842
dc.descriptionMontagnier, P., Spiteri, R.J., Angeles, J., The control of linear time-periodic systems using Floquet-Lyapunov theory (2004) Int. J. Control, 77 (5), pp. 472-490
dc.descriptionPhat, V.N., Ha, Q.P., New characterization of controllability via stabilizability and Riccati equation for LTV systems (2008) IMA J. Math. Control Inform., 25 (4), pp. 419-429
dc.descriptionPoubelle, M.A., Bitmead, R.R., Gevers, M.R., Fake algebraic Riccati techniques and stability (1988) IEEE Trans. Autom. Control, 33 (4), pp. 379-381
dc.descriptionSastry, S., Nonlinear systems: Analysis, stability, and control (1999) Interdisciplinary Applied Mathematics, , Springer-Verlag, New York
dc.descriptionSilverman, L.M., Anderson, B.D.O., Controllability, observability and stability of linear systems (1968) SIAM J. Control, 6 (1), pp. 121-130
dc.descriptionStreit, D.A., Krousgrill, C.M., Bajaj, A.K., Dynamic stability of flexible manipulators performing repetitive tasks (1985) Robot. Man. Automation, 15, pp. 121-136
dc.descriptionTornambè, A., Valigi, P., Asymptotic stabilization of a class of continuous-time linear periodic systems (1996) Syst. Control Letts., 28 (4), pp. 189-196
dc.descriptionVarga, A., On solving periodic Riccati equations (2008) Num. Lin. Alg. Appl., 15 (9), pp. 809-835
dc.descriptionWillems, J.L., Kučera, V., Brunovský, P., On the assignment of invariant factors by time-varying feedback strategies (1984) Syst. Control Letts., 5 (2), pp. 75-80
dc.descriptionZadeh, L.A., Desoer, C.A., Linear system theory - The state space approach (1963) McGraw Hill Series in System Science, , McGraw Hill, New York: McGraw-Hill
dc.descriptionZhou, B., Duan, G.R., Lin, Z., A parametric periodic Lyapunov equation with application in semiglobal stabilization of discrete-time periodic systems subject to actuator saturation (2011) Automatica, 47 (2), pp. 316-325
dc.descriptionZhou, B., Zheng, W.X., Duan, G.R., Stability and stabilization of discrete-time periodic linear systems with actuator saturation (2011) Automatica, 47 (8), pp. 1813-1820
dc.languageen
dc.publisher
dc.relationIFAC Proceedings Volumes (IFAC-PapersOnline)
dc.rightsfechado
dc.sourceScopus
dc.titleA Numerical Procedure To Compute Stabilizing State Feedback Gains For Linear Time-varying Periodic Systems
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución