dc.creatorde Castro M.S.
dc.creatorRodriguez O.M.H.
dc.date2015
dc.date2015-06-25T12:51:47Z
dc.date2015-11-26T14:32:44Z
dc.date2015-06-25T12:51:47Z
dc.date2015-11-26T14:32:44Z
dc.date.accessioned2018-03-28T21:36:07Z
dc.date.available2018-03-28T21:36:07Z
dc.identifier
dc.identifierExperimental Thermal And Fluid Science. Elsevier Inc., v. 62, n. , p. 85 - 98, 2015.
dc.identifier8941777
dc.identifier10.1016/j.expthermflusci.2014.12.003
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919941283&partnerID=40&md5=b944e1b4f94b9a5b5bdc640fd652639e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85295
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85295
dc.identifier2-s2.0-84919941283
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247683
dc.descriptionThe analysis of the interfacial wave properties is an important point in understanding of many aspects of separated-flow patterns (annular and stratified). One may cite flow pattern stability, pressure drop and heat transfer as characteristics affected by the wave properties. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interface, i.e., average wave shape, wave speed, amplitude and wavelength as a function of flow properties. Studies on waves in stratified liquid-liquid flow are scanty, even more when related to viscous oils. This article offers new experimental data on interfacial waves collected in a glass test line of 12m and 0.026m i.d., oil (density and viscosity of 854kg/m3 and 0.3Pas at 20°C, respectively) and tap water as the working fluids; the stratified flow was filmed with a high speed video camera at several inclinations from horizontal (-5°, 0°, 5°, 10°). New experimental data and available literature data of interfacial waves in oil-water flow were collected, analyzed and correlated to the flow properties by dimensionless numbers of Reynolds, Froude and Weber. A second-order Fourier series is proposed to model the wave shape. The correlations can be used to predict the average wave geometry and wave speed of typical oil-water interfacial waves within a significant range of superficial velocities and pipe inclinations. Considering the simplicity of the proposed correlation, the agreement between data and predicted wave is encouraging.
dc.description62
dc.description
dc.description85
dc.description98
dc.descriptionFrisk, D.P., Davis, J., The enhancement of heat transfer by waves in stratified gas-liquid flow (1972) Int. J. Heat Mass Transfer, 15, pp. 1537-1552
dc.descriptionWallis, G.B., (1969) One Dimension Two-phase Flow, , McGraw-Hill, New York
dc.descriptionRodriguez, O.M.H., Baldani, L.S., Prediction of pressure gradient and holdup in wavy stratified liquid-liquid pipe flow (2012) J. Petrol. Sci. Eng., pp. 140-151
dc.descriptionBontozoglou, V., Hanratty, T.J., Wave height estimation in stratified gas-liquid flows (1989) AIChE J., 35, pp. 1346-1350
dc.descriptionBontozoglou, V., Weakly nonlinear Kelvin-Helmholtz waves between fluids of finite depth (1991) Int. J. Multiph. Flow, 17, pp. 509-518
dc.descriptionLi, G.J., Guo, L., Chen, X.J., An experimental investigation on the interfacial waves in air-water two-phase flow within horizontal pipelines (1997) Chin. J. Chem. Eng., 5, pp. 316-324
dc.descriptionTzoti, C., Andritsos, N., Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes (2013) Int. J. Multiph. Flow, 54, pp. 43-54
dc.descriptionWang, Z.L., Gabriel, K.S., Manz, D.L., The influences of wave height on the interfacial friction in annular gas-liquid flow under normal and microgravity conditions (2004) Int. J. Multiph. Flow, 30, pp. 1193-1211
dc.descriptionWang, Z.L., Gabriel, K.S., Zhu, Z.F., The effects of gravity on the features of the interfacial waves in annular two-phase flow (2004) Micrograv. Sci. Technol., 15, pp. 19-27
dc.descriptionDyment, A., Boudlal, A., A theoretical model for gas-liquid slug flow in down inclined ducts (2004) Int. J. Multiph. Flow, 30, pp. 512-550
dc.descriptionBerthelsen, P.A., Ytrehus, T., Calculations of stratified wavy two-phase flow in pipes (2005) Int. J. Multiph. Flow, 31, pp. 571-592
dc.descriptionAndritsos, N., Hanratty, T.J., Influence of interfacial waves in stratified gas-liquid flows (1987) AIChE J., 33 (3), pp. 444-454
dc.descriptionAndritsos, N., Hanratty, T.J., Interfacial instabilities for horizontal gas-liquid flows in pipelines (1987) Int. J. Multiph. Flow, 13 (5), pp. 583-603
dc.descriptionAndritsos, N., Statistical analysis of waves in horizontal gas-liquid flow (1992) Int. J. Multiph. Flow, 18 (3), pp. 465-470
dc.descriptionChakrabarti, D.P., Das, G., Ray, S., Pressure drop in liquid-liquid two phase horizontal flow: experiment and prediction (2005) Chem. Eng. Technol., 28 (9), pp. 1003-1009
dc.descriptionChakrabarti, D.P., Das, G., Das, P.K., Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe (2007) Chem. Eng. Sci., 62, pp. 1861-1876
dc.descriptionCharles, M.E., Lilleleht, L.U., An experimental investigation of stability and interfacial waves in co-current flow of two liquids (1965) J. Fluid Mech., 22 (2), pp. 217-224
dc.descriptionCastro, M.S., Pereira, C.C., Santos, J.N., Rodriguez, O.M.H., Geometrical and kinematic properties of interfacial waves in stratified oil water flow in inclined pipe (2012) Exp. Therm. Fluid Sci., 37, pp. 171-178
dc.descriptionSotgia, G., Tartarini, P., Stalio, E., Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures (2008) Int. J. Multiph. Flow, 34, pp. 1161-1174
dc.descriptionYusuf, N., Effect of oil viscosity on the flow structure and pressure gradient in horizontal oil-water flow (2012) Chem. Eng. Res. Des., 90, pp. 1019-1030
dc.descriptionBrauner, N., Rovinsky, J., Maron, D.M., Determination of the interface curvature in stratified two-phase systems by energy considerations (1996) Int. J. Multiph. Flow, 22, pp. 1167-1185
dc.descriptionNg, T.S., Lawrence, C.J., Hewitt, G.F., Interface shapes for two-phase laminar stratified flow in a circular pipe (2001) Int. J. Multiph. Flow, 27, pp. 1301-1311
dc.descriptionBrauner, N., Maron, D.M., Rovinsky, J., A two-fluid model for stratified flows with curved interfaces (1989) Int. J. Multiph. Flow, 24, pp. 975-1004
dc.descriptionRaj, T.S., Chakrabarti, D.P., Das, G., Liquid-liquid stratified flow through horizontal conduits (2005) Chem. Eng. Technol., 28, pp. 899-907
dc.descriptionTaitel, Y., Dukler, A.E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flows (1976) AIChE J., 22, pp. 47-55
dc.descriptionTrallero, J.L., (1995), Oil-water Flow Patterns in Horizontal Pipes, Dissertation, University of Tulsa, TulsaTrallero, J.L., Sarica, C., Brill, J.P., A study of oil/water flow patterns in horizontal pipes (1997) SPE Prod. Facil., 12, pp. 165-172
dc.descriptionElseth, G., An Experimental Study of Oil-water Flow in Horizontal Pipes (2001), Dissertation, Norwegian University of Science and Technology, TrodheimAlkaya, B., Jayawardena, S.S., Brill, J.P., Oil-water flow patterns in slightly inclined pipes (2000), pp. 14-17. , Proceeding of ETCE/OMAE2000 International Conference of Energy for the New Millennium, New Orleans, ASME, New YorkBannwart, A.C., Flow patterns in heavy crude oil-water flow (2004) J. Energy Resour. Technol., 126, pp. 184-189
dc.descriptionArdron, K.H., One-dimensional two-fluid equations for horizontal stratified two-phase flow (1980) Int. J. Multiph. Flow, 6, pp. 295-304
dc.descriptionJones, A.V., Prosperetti, A., On the suitability of first-order differential models for two-phase flow prediction (1985) Int. J. Multiph. Flow, 11, pp. 133-148
dc.descriptionJones, A.V., Prosperetti, A., The linear stability of general two-phase flow models - II (1987) Int. J. Multiph. Flow, 13, pp. 161-171
dc.descriptionSong, J.H., Ishii, M., On the stability of a one-dimensional two-fluid model (2001) Nucl. Eng. Des., 204, pp. 101-115
dc.descriptionBrauner, N., Two-phase liquid-liquid annular flow (1991) Int. J. Multiph. Flow, 17, pp. 59-76
dc.descriptionBrauner, N., Maron, D.M., Stability analysis of stratified liquid-liquid flow (1992) Int. J. Multiph. Flow, 18, pp. 103-121
dc.descriptionBrauner, N., Maron, D.M., Flow pattern transitions in two-phase liquid-liquid flow in horizontal tubes (1992) Int. J. Multiph. Flow, 18, pp. 123-140
dc.descriptionRodriguez, O.M.H., Oliemans, R.V.A., Mude, R.F., Stability analysis of slightly-inclined stratified oil-water flow, including the distribution coefficients and the cross-section curvature (2006) Proceedings of 5th North American Conference Multiphase Technol, pp. 229-245. , Banff
dc.descriptionRodriguez, O.M.H., Banwart, A.C., Stability analysis of core-annular flow and neutral stability wave number (2008) AIChE J., 54, pp. 20-31
dc.descriptionCrowley, C.J., Wallis, G.B., Barry, J.J., Validation of a one-dimensional wave model for the stratified-to-slug flow regime transition, with consequences for wave growth and slug frequency (1992) Int. J. Multiph. Flow, 18, pp. 249-271
dc.descriptionOoms, G., The hydrodynamic stability of core-annular flow of two ideal liquid (1972) Appl. Sci. Res.
dc.descriptionOoms, G., Seagal, A., Van Der Wees, A.J., Meerhoff, R., Oliemans, R.V.A., A theoretical model for core annular flow of a very viscous oil core and a water annulus through a horizontal pipe (1984) Int. J. Multiph. Flow, 10, pp. 41-60
dc.descriptionOliemans, R.V.A., (1986), The Lubricating-film Model for Core-annular Flow, Dissertation, Technische Hogeschool Delft, Delft University, DelftFeng, Huang, P.Y., Joseph, D.D., Dynamic simulation of the motion of capsules in pipelines (1995) J. Fluid Mech., 286, pp. 201-227
dc.descriptionHuang, A., Joseph, D.D., Stability of eccentric core annular flow (1995) J. Fluid Mech., 282, pp. 233-245
dc.descriptionHu, H.H., Patankar, N., Non-axisymmetric instability of core-annular flow (1995) J. Fluid Mech., 290, pp. 213-224
dc.descriptionBai, Kelkar, K., Joseph, D.D., Direct simulation of interfacial waves in a high viscosity ratio and axisymmetric core annular flow (1996) J. Fluid Mech., 32, pp. 1-34
dc.descriptionBai, R., Joseph, D.D., Steady flow and interfacial shapes of a highly viscous dispersed phase (2000) Int. J. Multiph. Flow, 26, pp. 1469-1491
dc.descriptionRodriguez, O.M.H., Banwart, A.C., Experimental study on interfacial waves in vertical core flow (2006) J. Petrol. Sci. Eng., 54, pp. 140-148
dc.descriptionRodriguez, O.M.H., Castro, M.S., Interfacial-tension-force model for the wavy-stratified liquid-liquid flow pattern transition (2014) Int. J. Multiph. Flow, 58, pp. 114-126
dc.descriptionAl-Wahaibi, T., Angeli, P., Transition between stratified and non-stratified horizontal oil-water flows. Part I: stability analysis (2007) Chem. Eng. Sci., 62, pp. 2915-2928
dc.descriptionAl-Wahaibi, T., Smith, M., Angeli, P., Transition between stratified and non-stratified horizontal oil-water flows. Part II: mechanism of drop formation (2007) Chem. Eng. Sci., 62, pp. 2929-2940
dc.descriptionAl-Wahaibi, T., Angeli, P., Experimental study on interfacial waves in stratified horizontal oil-water flow (2011) Int. J. Multiph. Flow, 37, pp. 930-940
dc.descriptionBarral, A.H., Angeli, P., Interfacial characteristics of stratified liquid-liquid flows using a conductance probe (2013) Exp. Fluids, 54 (1604)
dc.descriptionRodriguez, I.H., Yamaguti, H.K.B., Castro, M.S., Da Silva, M.J., Rodriguez, O.M.H., Slip ratio in dispersed viscous oil-water pipe flow (2011) Exp. Therm. Fluid Sci., 35, pp. 11-19
dc.descriptionBendat, J.S., Piersol, A.G., (2000) Random Data: Analysis and Measurement Procedures, , John Wiley & Sons, New York
dc.descriptionAl-Sarkhi, A., Sarica, C., Magrini, K., Inclination effects on wave characteristics in anular gas-liquid flows (2012) AIChE J., 58 (4), pp. 1018-1029
dc.descriptionArney, M.S., Bai, R., Guevara, E., Joseph, D.D., Liu, K., Friction factor and holdup studies for lubricated pipeling - I (1993) Int. J. Multiph. Flow, 19 (6), pp. 1061-1076
dc.descriptionRodriguez, O.M.H., Castro, M.S., Interfacial-tension-force model for the wavy-stratified liquid-liquid flow pattern transition (2014) Int. J. Multiph. Flow, 58, pp. 114-126
dc.descriptionBarnea, D., Taitel, Y., Non-linear interfacial instability of separated flows (1994) Chem. Eng. Sci., 49, pp. 2341-2349
dc.descriptionSalhi, Y., Si-Ahmed, E., Legrand, J., Degrez, G., Stability analysis of inclined stratified two-phase gas-liquid flow (2010) Nucl. Eng. Des., 240, pp. 1083-1086
dc.descriptionBanner, M.L., Melville, W.K., On the separation of air flow over water waves (1976) J. Fluid Mech., 77, pp. 825-842
dc.languageen
dc.publisherElsevier Inc.
dc.relationExperimental Thermal and Fluid Science
dc.rightsfechado
dc.sourceScopus
dc.titleInterfacial Waves In Stratified Viscous Oil-water Flow
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución