dc.creator | de Castro M.S. | |
dc.creator | Rodriguez O.M.H. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:51:47Z | |
dc.date | 2015-11-26T14:32:44Z | |
dc.date | 2015-06-25T12:51:47Z | |
dc.date | 2015-11-26T14:32:44Z | |
dc.date.accessioned | 2018-03-28T21:36:07Z | |
dc.date.available | 2018-03-28T21:36:07Z | |
dc.identifier | | |
dc.identifier | Experimental Thermal And Fluid Science. Elsevier Inc., v. 62, n. , p. 85 - 98, 2015. | |
dc.identifier | 8941777 | |
dc.identifier | 10.1016/j.expthermflusci.2014.12.003 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84919941283&partnerID=40&md5=b944e1b4f94b9a5b5bdc640fd652639e | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85295 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85295 | |
dc.identifier | 2-s2.0-84919941283 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247683 | |
dc.description | The analysis of the interfacial wave properties is an important point in understanding of many aspects of separated-flow patterns (annular and stratified). One may cite flow pattern stability, pressure drop and heat transfer as characteristics affected by the wave properties. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interface, i.e., average wave shape, wave speed, amplitude and wavelength as a function of flow properties. Studies on waves in stratified liquid-liquid flow are scanty, even more when related to viscous oils. This article offers new experimental data on interfacial waves collected in a glass test line of 12m and 0.026m i.d., oil (density and viscosity of 854kg/m3 and 0.3Pas at 20°C, respectively) and tap water as the working fluids; the stratified flow was filmed with a high speed video camera at several inclinations from horizontal (-5°, 0°, 5°, 10°). New experimental data and available literature data of interfacial waves in oil-water flow were collected, analyzed and correlated to the flow properties by dimensionless numbers of Reynolds, Froude and Weber. A second-order Fourier series is proposed to model the wave shape. The correlations can be used to predict the average wave geometry and wave speed of typical oil-water interfacial waves within a significant range of superficial velocities and pipe inclinations. Considering the simplicity of the proposed correlation, the agreement between data and predicted wave is encouraging. | |
dc.description | 62 | |
dc.description | | |
dc.description | 85 | |
dc.description | 98 | |
dc.description | Frisk, D.P., Davis, J., The enhancement of heat transfer by waves in stratified gas-liquid flow (1972) Int. J. Heat Mass Transfer, 15, pp. 1537-1552 | |
dc.description | Wallis, G.B., (1969) One Dimension Two-phase Flow, , McGraw-Hill, New York | |
dc.description | Rodriguez, O.M.H., Baldani, L.S., Prediction of pressure gradient and holdup in wavy stratified liquid-liquid pipe flow (2012) J. Petrol. Sci. Eng., pp. 140-151 | |
dc.description | Bontozoglou, V., Hanratty, T.J., Wave height estimation in stratified gas-liquid flows (1989) AIChE J., 35, pp. 1346-1350 | |
dc.description | Bontozoglou, V., Weakly nonlinear Kelvin-Helmholtz waves between fluids of finite depth (1991) Int. J. Multiph. Flow, 17, pp. 509-518 | |
dc.description | Li, G.J., Guo, L., Chen, X.J., An experimental investigation on the interfacial waves in air-water two-phase flow within horizontal pipelines (1997) Chin. J. Chem. Eng., 5, pp. 316-324 | |
dc.description | Tzoti, C., Andritsos, N., Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes (2013) Int. J. Multiph. Flow, 54, pp. 43-54 | |
dc.description | Wang, Z.L., Gabriel, K.S., Manz, D.L., The influences of wave height on the interfacial friction in annular gas-liquid flow under normal and microgravity conditions (2004) Int. J. Multiph. Flow, 30, pp. 1193-1211 | |
dc.description | Wang, Z.L., Gabriel, K.S., Zhu, Z.F., The effects of gravity on the features of the interfacial waves in annular two-phase flow (2004) Micrograv. Sci. Technol., 15, pp. 19-27 | |
dc.description | Dyment, A., Boudlal, A., A theoretical model for gas-liquid slug flow in down inclined ducts (2004) Int. J. Multiph. Flow, 30, pp. 512-550 | |
dc.description | Berthelsen, P.A., Ytrehus, T., Calculations of stratified wavy two-phase flow in pipes (2005) Int. J. Multiph. Flow, 31, pp. 571-592 | |
dc.description | Andritsos, N., Hanratty, T.J., Influence of interfacial waves in stratified gas-liquid flows (1987) AIChE J., 33 (3), pp. 444-454 | |
dc.description | Andritsos, N., Hanratty, T.J., Interfacial instabilities for horizontal gas-liquid flows in pipelines (1987) Int. J. Multiph. Flow, 13 (5), pp. 583-603 | |
dc.description | Andritsos, N., Statistical analysis of waves in horizontal gas-liquid flow (1992) Int. J. Multiph. Flow, 18 (3), pp. 465-470 | |
dc.description | Chakrabarti, D.P., Das, G., Ray, S., Pressure drop in liquid-liquid two phase horizontal flow: experiment and prediction (2005) Chem. Eng. Technol., 28 (9), pp. 1003-1009 | |
dc.description | Chakrabarti, D.P., Das, G., Das, P.K., Identification of stratified liquid-liquid flow through horizontal pipes by a non-intrusive optical probe (2007) Chem. Eng. Sci., 62, pp. 1861-1876 | |
dc.description | Charles, M.E., Lilleleht, L.U., An experimental investigation of stability and interfacial waves in co-current flow of two liquids (1965) J. Fluid Mech., 22 (2), pp. 217-224 | |
dc.description | Castro, M.S., Pereira, C.C., Santos, J.N., Rodriguez, O.M.H., Geometrical and kinematic properties of interfacial waves in stratified oil water flow in inclined pipe (2012) Exp. Therm. Fluid Sci., 37, pp. 171-178 | |
dc.description | Sotgia, G., Tartarini, P., Stalio, E., Experimental analysis of flow regimes and pressure drop reduction in oil-water mixtures (2008) Int. J. Multiph. Flow, 34, pp. 1161-1174 | |
dc.description | Yusuf, N., Effect of oil viscosity on the flow structure and pressure gradient in horizontal oil-water flow (2012) Chem. Eng. Res. Des., 90, pp. 1019-1030 | |
dc.description | Brauner, N., Rovinsky, J., Maron, D.M., Determination of the interface curvature in stratified two-phase systems by energy considerations (1996) Int. J. Multiph. Flow, 22, pp. 1167-1185 | |
dc.description | Ng, T.S., Lawrence, C.J., Hewitt, G.F., Interface shapes for two-phase laminar stratified flow in a circular pipe (2001) Int. J. Multiph. Flow, 27, pp. 1301-1311 | |
dc.description | Brauner, N., Maron, D.M., Rovinsky, J., A two-fluid model for stratified flows with curved interfaces (1989) Int. J. Multiph. Flow, 24, pp. 975-1004 | |
dc.description | Raj, T.S., Chakrabarti, D.P., Das, G., Liquid-liquid stratified flow through horizontal conduits (2005) Chem. Eng. Technol., 28, pp. 899-907 | |
dc.description | Taitel, Y., Dukler, A.E., A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flows (1976) AIChE J., 22, pp. 47-55 | |
dc.description | Trallero, J.L., (1995), Oil-water Flow Patterns in Horizontal Pipes, Dissertation, University of Tulsa, TulsaTrallero, J.L., Sarica, C., Brill, J.P., A study of oil/water flow patterns in horizontal pipes (1997) SPE Prod. Facil., 12, pp. 165-172 | |
dc.description | Elseth, G., An Experimental Study of Oil-water Flow in Horizontal Pipes (2001), Dissertation, Norwegian University of Science and Technology, TrodheimAlkaya, B., Jayawardena, S.S., Brill, J.P., Oil-water flow patterns in slightly inclined pipes (2000), pp. 14-17. , Proceeding of ETCE/OMAE2000 International Conference of Energy for the New Millennium, New Orleans, ASME, New YorkBannwart, A.C., Flow patterns in heavy crude oil-water flow (2004) J. Energy Resour. Technol., 126, pp. 184-189 | |
dc.description | Ardron, K.H., One-dimensional two-fluid equations for horizontal stratified two-phase flow (1980) Int. J. Multiph. Flow, 6, pp. 295-304 | |
dc.description | Jones, A.V., Prosperetti, A., On the suitability of first-order differential models for two-phase flow prediction (1985) Int. J. Multiph. Flow, 11, pp. 133-148 | |
dc.description | Jones, A.V., Prosperetti, A., The linear stability of general two-phase flow models - II (1987) Int. J. Multiph. Flow, 13, pp. 161-171 | |
dc.description | Song, J.H., Ishii, M., On the stability of a one-dimensional two-fluid model (2001) Nucl. Eng. Des., 204, pp. 101-115 | |
dc.description | Brauner, N., Two-phase liquid-liquid annular flow (1991) Int. J. Multiph. Flow, 17, pp. 59-76 | |
dc.description | Brauner, N., Maron, D.M., Stability analysis of stratified liquid-liquid flow (1992) Int. J. Multiph. Flow, 18, pp. 103-121 | |
dc.description | Brauner, N., Maron, D.M., Flow pattern transitions in two-phase liquid-liquid flow in horizontal tubes (1992) Int. J. Multiph. Flow, 18, pp. 123-140 | |
dc.description | Rodriguez, O.M.H., Oliemans, R.V.A., Mude, R.F., Stability analysis of slightly-inclined stratified oil-water flow, including the distribution coefficients and the cross-section curvature (2006) Proceedings of 5th North American Conference Multiphase Technol, pp. 229-245. , Banff | |
dc.description | Rodriguez, O.M.H., Banwart, A.C., Stability analysis of core-annular flow and neutral stability wave number (2008) AIChE J., 54, pp. 20-31 | |
dc.description | Crowley, C.J., Wallis, G.B., Barry, J.J., Validation of a one-dimensional wave model for the stratified-to-slug flow regime transition, with consequences for wave growth and slug frequency (1992) Int. J. Multiph. Flow, 18, pp. 249-271 | |
dc.description | Ooms, G., The hydrodynamic stability of core-annular flow of two ideal liquid (1972) Appl. Sci. Res. | |
dc.description | Ooms, G., Seagal, A., Van Der Wees, A.J., Meerhoff, R., Oliemans, R.V.A., A theoretical model for core annular flow of a very viscous oil core and a water annulus through a horizontal pipe (1984) Int. J. Multiph. Flow, 10, pp. 41-60 | |
dc.description | Oliemans, R.V.A., (1986), The Lubricating-film Model for Core-annular Flow, Dissertation, Technische Hogeschool Delft, Delft University, DelftFeng, Huang, P.Y., Joseph, D.D., Dynamic simulation of the motion of capsules in pipelines (1995) J. Fluid Mech., 286, pp. 201-227 | |
dc.description | Huang, A., Joseph, D.D., Stability of eccentric core annular flow (1995) J. Fluid Mech., 282, pp. 233-245 | |
dc.description | Hu, H.H., Patankar, N., Non-axisymmetric instability of core-annular flow (1995) J. Fluid Mech., 290, pp. 213-224 | |
dc.description | Bai, Kelkar, K., Joseph, D.D., Direct simulation of interfacial waves in a high viscosity ratio and axisymmetric core annular flow (1996) J. Fluid Mech., 32, pp. 1-34 | |
dc.description | Bai, R., Joseph, D.D., Steady flow and interfacial shapes of a highly viscous dispersed phase (2000) Int. J. Multiph. Flow, 26, pp. 1469-1491 | |
dc.description | Rodriguez, O.M.H., Banwart, A.C., Experimental study on interfacial waves in vertical core flow (2006) J. Petrol. Sci. Eng., 54, pp. 140-148 | |
dc.description | Rodriguez, O.M.H., Castro, M.S., Interfacial-tension-force model for the wavy-stratified liquid-liquid flow pattern transition (2014) Int. J. Multiph. Flow, 58, pp. 114-126 | |
dc.description | Al-Wahaibi, T., Angeli, P., Transition between stratified and non-stratified horizontal oil-water flows. Part I: stability analysis (2007) Chem. Eng. Sci., 62, pp. 2915-2928 | |
dc.description | Al-Wahaibi, T., Smith, M., Angeli, P., Transition between stratified and non-stratified horizontal oil-water flows. Part II: mechanism of drop formation (2007) Chem. Eng. Sci., 62, pp. 2929-2940 | |
dc.description | Al-Wahaibi, T., Angeli, P., Experimental study on interfacial waves in stratified horizontal oil-water flow (2011) Int. J. Multiph. Flow, 37, pp. 930-940 | |
dc.description | Barral, A.H., Angeli, P., Interfacial characteristics of stratified liquid-liquid flows using a conductance probe (2013) Exp. Fluids, 54 (1604) | |
dc.description | Rodriguez, I.H., Yamaguti, H.K.B., Castro, M.S., Da Silva, M.J., Rodriguez, O.M.H., Slip ratio in dispersed viscous oil-water pipe flow (2011) Exp. Therm. Fluid Sci., 35, pp. 11-19 | |
dc.description | Bendat, J.S., Piersol, A.G., (2000) Random Data: Analysis and Measurement Procedures, , John Wiley & Sons, New York | |
dc.description | Al-Sarkhi, A., Sarica, C., Magrini, K., Inclination effects on wave characteristics in anular gas-liquid flows (2012) AIChE J., 58 (4), pp. 1018-1029 | |
dc.description | Arney, M.S., Bai, R., Guevara, E., Joseph, D.D., Liu, K., Friction factor and holdup studies for lubricated pipeling - I (1993) Int. J. Multiph. Flow, 19 (6), pp. 1061-1076 | |
dc.description | Rodriguez, O.M.H., Castro, M.S., Interfacial-tension-force model for the wavy-stratified liquid-liquid flow pattern transition (2014) Int. J. Multiph. Flow, 58, pp. 114-126 | |
dc.description | Barnea, D., Taitel, Y., Non-linear interfacial instability of separated flows (1994) Chem. Eng. Sci., 49, pp. 2341-2349 | |
dc.description | Salhi, Y., Si-Ahmed, E., Legrand, J., Degrez, G., Stability analysis of inclined stratified two-phase gas-liquid flow (2010) Nucl. Eng. Des., 240, pp. 1083-1086 | |
dc.description | Banner, M.L., Melville, W.K., On the separation of air flow over water waves (1976) J. Fluid Mech., 77, pp. 825-842 | |
dc.language | en | |
dc.publisher | Elsevier Inc. | |
dc.relation | Experimental Thermal and Fluid Science | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Interfacial Waves In Stratified Viscous Oil-water Flow | |
dc.type | Artículos de revistas | |