dc.creator | Romao E.C. | |
dc.creator | Martins J.A. | |
dc.creator | Moura L.F.M. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:54:22Z | |
dc.date | 2015-11-26T14:32:36Z | |
dc.date | 2015-06-25T17:54:22Z | |
dc.date | 2015-11-26T14:32:36Z | |
dc.date.accessioned | 2018-03-28T21:35:58Z | |
dc.date.available | 2018-03-28T21:35:58Z | |
dc.identifier | | |
dc.identifier | Wseas Transactions On Fluid Mechanics. World Scientific And Engineering Academy And Society, v. 9, n. 1, p. 196 - 209, 2014. | |
dc.identifier | 17905087 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84912559664&partnerID=40&md5=b1ebfc2a0189fefb85cd41b10f3bb7b9 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86664 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86664 | |
dc.identifier | 2-s2.0-84912559664 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247650 | |
dc.description | In this paper a study to application of Least Squares Finite Element Method (LSFEM) is made and with auxiliary equations (temperature derivatives) in the solution of Transient Three-dimensional Diffusion-Reaction. In order to do so, two applications are presented and discussed, one of them Pure Diffusion and another Diffusion-Reaction, both solved towards the constructive meshes with hexahedron of 8 and 27 nodes. This analysis uses the standard L∞ (maximum error in all meshes) and L2 (average error in all the meshes) to verify the numerical error committed in the solution. | |
dc.description | 9 | |
dc.description | 1 | |
dc.description | 196 | |
dc.description | 209 | |
dc.description | Arpaci, V.S., “Conduction Heat Transfer” (1966) Addison-Wesley Publishing Company, p. 550p | |
dc.description | Bejan, A., “Transferência de Calor” (1996) Editora Edgard Blücher Ltda, p. 540p. , in portuguese | |
dc.description | Carslaw, H.S., Jaeger, J.C., (1986) “Conduction of Heat in Solids”, p. 260. , 2ª Edition, Claredon Press-Oxford | |
dc.description | Smith, G.D., “Numerical Solution of Partial Differential Equations”, 179, p. 1971. , Oxford Mathematical Handbooks, NewYork | |
dc.description | Chung, T.J., (2002) Computational Fluid Dynamics, p. 1012. , Cambridge University Press | |
dc.description | Lewis, R.W., Niyhiarasu, P., Seetharamu, K.N., (2004) “Fundamentals of the Finite Element Method for Heat and Fluid Flow”, p. 341. , John Wiley & Sons Ltd | |
dc.description | Donea, J., Huerta, A., (2003) “Finite Element Methods for Flow Problems”, p. 350. , John Wiley & Sons Ltd | |
dc.description | Reddy, J.N., Second Edition, McGraw-Hill (1993) “An Introduction to the Finite Element Method”, p. 684 | |
dc.description | Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.P., “Stiffness and Deflection Analysis of Complex Structures” (1956) J. Aeron, Sci., 23 (9), pp. 805-823 | |
dc.description | Clough, R.W., “The Finite Element Method in Plane Stress Analysis” (1960) Proceedings of 2nd Conf on Electronic Computation, American Society of Civil Engineers, pp. 345-378. , Pittsburg, Penn | |
dc.description | Argyris, J.H., (1963) “Recent Advances in Matrix Methods of Structural Analysis. Progress in Aeronautical Science”, 4. , Pergamon Press, Elmsford, New York | |
dc.description | Zienkiewicz, O.C., Cheung, Y.K., “Finite Element in the solution of field problems” (1965) The Engineer, pp. 507-510 | |
dc.description | Oden, J.T., Wellford, L.C., Jr., “Analysis of Flow of Viscous Fluids by the Finite Element Method” (1972) AIAA J., 10 (12), pp. 1590-1599 | |
dc.description | Donea, J., Quartapelle, L., “An introduction to finite element methods for transient advection problems” (1992) Computers Methods in Applied Mechanics and Engineering, 95, pp. 169-203 | |
dc.description | Winterscheidt, D., Surana, K.S., “p-Version Least-Squartes Finite Element formulation for convection-diffusion problems" (1993) International Journal for Numerical Methods in Engineering, 36, pp. 111-133 | |
dc.description | Burrel, L.L., Tang, L.Q., Tsang, T.T.H., “On a Least-Squares Finite Element Method for Advective Transport in Air Pollution Modeling” (1995) Atmospheric Environment, 29 (12), pp. 1425-1439 | |
dc.description | Howle, L.E., “A comparison of the reduced Galerkin and pseudo-spectral methods for simulation of steady Rayleigh-Bénard convection” (1996) International Journal Heat Mass Transfer, 39 (12), pp. 2401-2407 | |
dc.description | Bramble, J.H., Lazarov, R.D., Pasciak, J.E., “Least Squares for second-order elliptic problems” (1998) Comput. Methods Appl. Mech. Engrg., 152, pp. 195-210 | |
dc.description | Codina, R., “Comparison of some finite element methods for solving the diffusion-convection-reaction equation” (1998) Comput. Methods. Appl. Mech. Engrg., 156, pp. 185-210 | |
dc.description | Vujicic, M.R., Brown, S.G.R., “Iterative Solvers in the Finite Element Solution of Transient Heat Conduction” (2004) FME Transactions, 32, pp. 61-68 | |
dc.description | Catabriga, L., Valli, A.M.P., Melotti, B.Z., Pessoa, L.M., Coutinho, A.L.G.A., “Performance of LCD iterative method in the finite element and finite difference solution of convection–diffusion equations” (2006) Commun. Numer. Meth. Engng, 22, pp. 643-656 | |
dc.description | Dag, I., Irk, D., Tombul, M., “Least-squares finite element method for the advection–diffusion equation” (2006) Applied Mathematics and Computation, 173, pp. 554-565 | |
dc.description | Asensio, M.I., Ayuso, B., Sangalli, G., “Coupling stabilized finite element methods with finite difference time integration for advection–diffusion–reaction problems” (2007) Comput. Methods Appl. Mech. Engrg, 196, pp. 3475-3491 | |
dc.description | Si, Z., Feng, X., Abduwali, A., “The semi-discrete streamline diffusion finite element method for time-dependented convection–diffusion problems” (2008) Applied Mathematics and Computation, 202, pp. 771-779 | |
dc.description | Hannukainen, A., Korotov, S., Krizek, M., “Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear and trilinear FE approximations” (2010) Journal of Computational Mathematics, 28 (1), pp. 1-10 | |
dc.description | Jiang, B.N., (1998) “The Least-Squares Finite Element Method: Theory and Aplications in Computational Fluid Dynamics and Electromagnetics”, p. 416. , Springer | |
dc.description | Dhatt, G., Touzot, G., (1984) “The Finite Element Method Displayed”, p. 580. , John Wiley & Sons | |
dc.description | Romão, E.C., De Campos, M.D., De Moura, L.F.M., “Application of the Galerkin and Least-Squares Finite Element Methods in the solution of 3D Poisson and Helmholtz equations” (2011) Computers and Mathematics with Applications, 62, pp. 4288-4299 | |
dc.description | Romão, E.C., De Moura, L.F.M., “Galerkin and Least Squares Methods to solve a 3D Convection–Diffusion–Reaction equation with variable coefficients” (2012) Numerical Heat Transfer, Part A, 61, pp. 669-698 | |
dc.description | Romão, E.C., Moura, L.F.M., 3D contaminant transport by GFEM with hexahedral elements (2013) International Communications in Heat and Mass Transfer, 42, pp. 43-50 | |
dc.description | Romão, E.C., 3D Unsteady Diffusion and Reaction-Diffusion with Singularities by GFEM with 27-Node Hexahedrons (2014) Mathematical Problems in Engineering, p. 12. , Article ID 560492 | |
dc.language | en | |
dc.publisher | World Scientific and Engineering Academy and Society | |
dc.relation | WSEAS Transactions on Fluid Mechanics | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Least Squares Finite Element Method For 3d Unsteady Diffusion And Reaction-diffusion Problems | |
dc.type | Artículos de revistas | |