dc.creatorRomao E.C.
dc.creatorMartins J.A.
dc.creatorMoura L.F.M.
dc.date2014
dc.date2015-06-25T17:54:22Z
dc.date2015-11-26T14:32:36Z
dc.date2015-06-25T17:54:22Z
dc.date2015-11-26T14:32:36Z
dc.date.accessioned2018-03-28T21:35:58Z
dc.date.available2018-03-28T21:35:58Z
dc.identifier
dc.identifierWseas Transactions On Fluid Mechanics. World Scientific And Engineering Academy And Society, v. 9, n. 1, p. 196 - 209, 2014.
dc.identifier17905087
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84912559664&partnerID=40&md5=b1ebfc2a0189fefb85cd41b10f3bb7b9
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86664
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86664
dc.identifier2-s2.0-84912559664
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247650
dc.descriptionIn this paper a study to application of Least Squares Finite Element Method (LSFEM) is made and with auxiliary equations (temperature derivatives) in the solution of Transient Three-dimensional Diffusion-Reaction. In order to do so, two applications are presented and discussed, one of them Pure Diffusion and another Diffusion-Reaction, both solved towards the constructive meshes with hexahedron of 8 and 27 nodes. This analysis uses the standard L∞ (maximum error in all meshes) and L2 (average error in all the meshes) to verify the numerical error committed in the solution.
dc.description9
dc.description1
dc.description196
dc.description209
dc.descriptionArpaci, V.S., “Conduction Heat Transfer” (1966) Addison-Wesley Publishing Company, p. 550p
dc.descriptionBejan, A., “Transferência de Calor” (1996) Editora Edgard Blücher Ltda, p. 540p. , in portuguese
dc.descriptionCarslaw, H.S., Jaeger, J.C., (1986) “Conduction of Heat in Solids”, p. 260. , 2ª Edition, Claredon Press-Oxford
dc.descriptionSmith, G.D., “Numerical Solution of Partial Differential Equations”, 179, p. 1971. , Oxford Mathematical Handbooks, NewYork
dc.descriptionChung, T.J., (2002) Computational Fluid Dynamics, p. 1012. , Cambridge University Press
dc.descriptionLewis, R.W., Niyhiarasu, P., Seetharamu, K.N., (2004) “Fundamentals of the Finite Element Method for Heat and Fluid Flow”, p. 341. , John Wiley & Sons Ltd
dc.descriptionDonea, J., Huerta, A., (2003) “Finite Element Methods for Flow Problems”, p. 350. , John Wiley & Sons Ltd
dc.descriptionReddy, J.N., Second Edition, McGraw-Hill (1993) “An Introduction to the Finite Element Method”, p. 684
dc.descriptionTurner, M.J., Clough, R.W., Martin, H.C., Topp, L.P., “Stiffness and Deflection Analysis of Complex Structures” (1956) J. Aeron, Sci., 23 (9), pp. 805-823
dc.descriptionClough, R.W., “The Finite Element Method in Plane Stress Analysis” (1960) Proceedings of 2nd Conf on Electronic Computation, American Society of Civil Engineers, pp. 345-378. , Pittsburg, Penn
dc.descriptionArgyris, J.H., (1963) “Recent Advances in Matrix Methods of Structural Analysis. Progress in Aeronautical Science”, 4. , Pergamon Press, Elmsford, New York
dc.descriptionZienkiewicz, O.C., Cheung, Y.K., “Finite Element in the solution of field problems” (1965) The Engineer, pp. 507-510
dc.descriptionOden, J.T., Wellford, L.C., Jr., “Analysis of Flow of Viscous Fluids by the Finite Element Method” (1972) AIAA J., 10 (12), pp. 1590-1599
dc.descriptionDonea, J., Quartapelle, L., “An introduction to finite element methods for transient advection problems” (1992) Computers Methods in Applied Mechanics and Engineering, 95, pp. 169-203
dc.descriptionWinterscheidt, D., Surana, K.S., “p-Version Least-Squartes Finite Element formulation for convection-diffusion problems" (1993) International Journal for Numerical Methods in Engineering, 36, pp. 111-133
dc.descriptionBurrel, L.L., Tang, L.Q., Tsang, T.T.H., “On a Least-Squares Finite Element Method for Advective Transport in Air Pollution Modeling” (1995) Atmospheric Environment, 29 (12), pp. 1425-1439
dc.descriptionHowle, L.E., “A comparison of the reduced Galerkin and pseudo-spectral methods for simulation of steady Rayleigh-Bénard convection” (1996) International Journal Heat Mass Transfer, 39 (12), pp. 2401-2407
dc.descriptionBramble, J.H., Lazarov, R.D., Pasciak, J.E., “Least Squares for second-order elliptic problems” (1998) Comput. Methods Appl. Mech. Engrg., 152, pp. 195-210
dc.descriptionCodina, R., “Comparison of some finite element methods for solving the diffusion-convection-reaction equation” (1998) Comput. Methods. Appl. Mech. Engrg., 156, pp. 185-210
dc.descriptionVujicic, M.R., Brown, S.G.R., “Iterative Solvers in the Finite Element Solution of Transient Heat Conduction” (2004) FME Transactions, 32, pp. 61-68
dc.descriptionCatabriga, L., Valli, A.M.P., Melotti, B.Z., Pessoa, L.M., Coutinho, A.L.G.A., “Performance of LCD iterative method in the finite element and finite difference solution of convection–diffusion equations” (2006) Commun. Numer. Meth. Engng, 22, pp. 643-656
dc.descriptionDag, I., Irk, D., Tombul, M., “Least-squares finite element method for the advection–diffusion equation” (2006) Applied Mathematics and Computation, 173, pp. 554-565
dc.descriptionAsensio, M.I., Ayuso, B., Sangalli, G., “Coupling stabilized finite element methods with finite difference time integration for advection–diffusion–reaction problems” (2007) Comput. Methods Appl. Mech. Engrg, 196, pp. 3475-3491
dc.descriptionSi, Z., Feng, X., Abduwali, A., “The semi-discrete streamline diffusion finite element method for time-dependented convection–diffusion problems” (2008) Applied Mathematics and Computation, 202, pp. 771-779
dc.descriptionHannukainen, A., Korotov, S., Krizek, M., “Nodal O(h4)-superconvergence in 3D by averaging piecewise linear, bilinear and trilinear FE approximations” (2010) Journal of Computational Mathematics, 28 (1), pp. 1-10
dc.descriptionJiang, B.N., (1998) “The Least-Squares Finite Element Method: Theory and Aplications in Computational Fluid Dynamics and Electromagnetics”, p. 416. , Springer
dc.descriptionDhatt, G., Touzot, G., (1984) “The Finite Element Method Displayed”, p. 580. , John Wiley & Sons
dc.descriptionRomão, E.C., De Campos, M.D., De Moura, L.F.M., “Application of the Galerkin and Least-Squares Finite Element Methods in the solution of 3D Poisson and Helmholtz equations” (2011) Computers and Mathematics with Applications, 62, pp. 4288-4299
dc.descriptionRomão, E.C., De Moura, L.F.M., “Galerkin and Least Squares Methods to solve a 3D Convection–Diffusion–Reaction equation with variable coefficients” (2012) Numerical Heat Transfer, Part A, 61, pp. 669-698
dc.descriptionRomão, E.C., Moura, L.F.M., 3D contaminant transport by GFEM with hexahedral elements (2013) International Communications in Heat and Mass Transfer, 42, pp. 43-50
dc.descriptionRomão, E.C., 3D Unsteady Diffusion and Reaction-Diffusion with Singularities by GFEM with 27-Node Hexahedrons (2014) Mathematical Problems in Engineering, p. 12. , Article ID 560492
dc.languageen
dc.publisherWorld Scientific and Engineering Academy and Society
dc.relationWSEAS Transactions on Fluid Mechanics
dc.rightsaberto
dc.sourceScopus
dc.titleLeast Squares Finite Element Method For 3d Unsteady Diffusion And Reaction-diffusion Problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución