dc.creatorDias T.R.
dc.creatorRohwedder J.J.R.
dc.creatorBrasil M.A.S.
dc.creatorReis B.F.
dc.date2014
dc.date2015-06-25T17:54:17Z
dc.date2015-11-26T14:31:35Z
dc.date2015-06-25T17:54:17Z
dc.date2015-11-26T14:31:35Z
dc.date.accessioned2018-03-28T21:34:57Z
dc.date.available2018-03-28T21:34:57Z
dc.identifier
dc.identifierAnalytical Methods. Royal Society Of Chemistry, v. 6, n. 24, p. 9667 - 9674, 2014.
dc.identifier17599660
dc.identifier10.1039/c4ay01522c
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84911500582&partnerID=40&md5=b723295c1c8efeb40e3eab320e70e7ce
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86649
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86649
dc.identifier2-s2.0-84911500582
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247405
dc.descriptionThis article focuses on the development of an analytical procedure for the photometric determination of vanadium in fresh and mineral waters, implemented employing a downsized multicommuted flow analysis approach. A flow system module using solenoid mini-pumps for fluid propelling and a light emitting diode (LED) based photometer were handled employing a microcontroller (PIC18F). Aiming to improve sensitivity, the flow analysis module and the photometer were designed to allow the coupling of a flow cell with an optical pathlength of 150 mm. The photometric procedure was based on the reaction of V(iv) with eriochrome cyanine R, which formed a compound that presented maximum absorption at 560 nm. Samples of river water and mineral water were processed with the intention to assess the effectiveness of both equipment setup and analytical procedure. The proposed setup presented good overall performance including a linear response (r = 0.997) comprising the concentration range of 0.02 to 1.50 μg mL-1 vanadium; reagent consumption of 11.6 μg eriochrome cyanine R and 8.6 mg ascorbic acid per determination; and a detection limit of 13 μg L-1 vanadium. Other useful features including a relative standard deviation of 0.87% (n = 10), a sampling throughput of 47 determination per hour and a waste generation of 2.4 mL per determination were also achieved.
dc.description6
dc.description24
dc.description9667
dc.description9674
dc.descriptionMukherjee, B., Patra, B., Mahapatra, S., (2004) Toxicol. Lett., 150, p. 135
dc.descriptionAl-Tayar, N.G.S., Nagaraja, P., Vasantha, R.A., Shresta, A.K., (2012) Environ. Monit. Assess., 184, p. 181
dc.descriptionTaylor, M.J.C., Marshall, G.D., Williams, S.J.S., VanStaden, J.F., Saling, C., (1996) Anal. Chim. Acta, 329, p. 275
dc.descriptionKhuhawar, M.Y., Arain, G.M., (2006) Talanta, 68, p. 535
dc.descriptionDadfarnia, S., Shabani, A.M.H., Mirshamsi, A., (2011) Turk. J. Chem., 35, p. 625
dc.descriptionDomingo, J.L., (1996) Reprod. Toxicol., 10, p. 175
dc.descriptionAmin, A.S., (2003) Spectrochim. Acta, Part A, 59, p. 1025
dc.descriptionKumar, A.P., Reddy, P.R., Vanka, K., (2008) Anal. Lett., 41, p. 1022
dc.descriptionKumar, K.S., Kang, S.H., Suvardhan, K., Kiran, K., (2007) Environ. Toxicol. Pharmacol., 24, p. 37
dc.descriptionPinto, J.J., Garcia-Vargas, M., Moreno, C., (2013) Talanta, 103, p. 161
dc.descriptionNakano, S., Tanaka, E., Mizutani, Y., (2003) Talanta, 61, p. 203
dc.descriptionAmin, A.S., Saber, A.L., Mohammed, T.Y., (2009) Spectrochim. Acta, Part A, 73, p. 195
dc.descriptionBhuiyan, M.S., Shibuya, M., Shioda, N., Moriguchi, S., Kasahara, J., Iwabuchi, Y., Fukunaga, K., (2007) Eur. J. Pharmacol., 571, p. 180
dc.descriptionRama, M.J.R., Medina, A.R., Diaz, A.M., (2005) Talanta, 66, p. 1333
dc.descriptionDeng, P.H., Fei, J.J., Zhang, J., Li, J.N., (2009) Microchim. Acta, 165, p. 211
dc.descriptionAyora-Canada, M.J., Molina-Diaz, A., Pascual-Reguera, M.I., (2000) Int. J. Environ. Anal. Chem., 76, p. 319
dc.descriptionLi, Q.M., Zhao, X.H., Jiang, K., Liu, G.G., (2007) Microchim. Acta, 158, p. 123
dc.descriptionNarayana, S.L., Reddy, K.J., Reddy, S.A.N., Sarala, Y., Reddy, A.V., (2008) Environ. Monit. Assess., 144, p. 341
dc.descriptionTeshima, N., Kuno, M., Ueda, M., Ueda, H., Ohno, S., Sakai, T., (2009) Talanta, 79, p. 517
dc.descriptionCassella, R.J., Oliveira, E.P., Magalhaes, O.I.B., (2006) Talanta, 69, p. 48
dc.descriptionAucelio, R.Q., Doyle, A., Pizzorno, B.S., Tristao, M.L.B., Campos, R.C., (2004) Microchem. J., 78, p. 21
dc.descriptionSturini, M., Rivagli, E., Maraschi, F., Speltini, A., Profumo, A., Albini, A., (2013) J. Hazard. Mater., 254, p. 179
dc.descriptionAydin, I., Aydin, F., Hamamci, C., (2013) Microchem. J., 108, p. 64
dc.descriptionManz, A., Graber, N., Widmer, H.M., (1990) Sens. Actuators, B, 1, p. 244
dc.descriptionRuzicka, J., (2000) Analyst, 125, p. 1053
dc.descriptionVidigal, S.S.M.P., Toth, I.V., Rangel, A.O.S.S., (2010) J. Agric. Food Chem., 58, p. 2071
dc.descriptionVidigal, S.S.M.P., Toth, I.V., Rangel, A.O.S.S., (2008) Talanta, 77, p. 494
dc.descriptionSeo, J., Lee, L.P., (2004) Sens. Actuators, B, 99, p. 615
dc.descriptionFonseca, A., Raimundo, I.M., Jr., Rohwedder, J.J.R., Ferreira, L.O.S., (2007) Anal. Chim. Acta, 603, p. 159
dc.descriptionLima, M.B., Barreto, I.S., Andrade, S.L.E., Almeida, L.F., Araújo, M.C.U., (2012) Talanta, 100, p. 308
dc.descriptionSplawna, B.G., Lytle, F.E., (2002) Anal. Bioanal. Chem., 373, p. 519
dc.descriptionAnthemidis, A.N., Daftsis, E.I., Kalogiouri, N.P., (2014) Anal. Methods, 6, p. 2745
dc.descriptionBotev, I., (1979) Fresenius' Z. Anal. Chem., 297, p. 419
dc.descriptionBorges, S.S., Peixoto, J.S., Feres, M.A., Reis, B.F., (2010) Anal. Chim. Acta, 668, p. 3
dc.descriptionLavorante, A.F., Morales-Rubio, A., De La Guardia, M., Reis, B.F., (2007) Anal. Chim. Acta, 600, p. 58
dc.descriptionFernandes, R.N., Reis, B.F., Morales-Rubio, A., De La Guardia, M., (2009) J. Braz. Chem. Soc., 20, p. 1242
dc.descriptionVieira, G.P., Crispino, C.C., Perdigão, S.R.W., Reis, B.F., (2013) Anal. Methods, 5, p. 489
dc.descriptionCrispino, C.C., Reis, B.F., (2014) Anal. Methods, 6, p. 302
dc.descriptionFrizzarin, R.M., Rocha, F.R.P., (2014) Anal. Chim. Acta, 820, p. 69
dc.descriptionArmenta, S., Garrigues, S., De La Guardia, M., (2008) Trends Anal. Chem., 27, p. 497
dc.descriptionMelchert, W.R., Reis, B.F., Rocha, F.R.P., (2012) Anal. Chim. Acta, 714, p. 8
dc.descriptionRocha, F.R.P., Teixeira, L.S.G., Nobrega, J.A., (2009) Spectrosc. Lett., 42, p. 418
dc.descriptionBoudra, S., Bosquesendra, J.M., Valencia, M.C., (1995) Talanta, 42, p. 1525
dc.descriptionDias, T.R., Brasil, M.A.S., Feres, M.A., Reis, B.F., (2014) Sens. Actuators, B, 198, p. 448
dc.descriptionRodenas-Torralba, E., Rocha, F.R.P., Reis, B.F., Morales-Rubio, A., De La Guardia, M., (2006) J. Autom. Methods Manage. Chem., p. 1. , 20384
dc.descriptionCurrie, L.A., (1968) Anal. Chem., 40, p. 586
dc.descriptionhttp://www.mma.gov.br/port/conama/res/res05/res35705.pdf, Resolution no. 357/2005. accessed in May 2012http://oehha.ca.gov/water/pals/vanadium.html#sthash.2a0asEnm.dpuf, accessed June 2014
dc.languageen
dc.publisherRoyal Society of Chemistry
dc.relationAnalytical Methods
dc.rightsaberto
dc.sourceScopus
dc.titleDevelopment Of A High Sensitivity Photometric Procedure For The Determination Of Vanadium In Mineral And Fresh Waters Employing A Downsized Multicommuted Flow Analysis Approach
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución