dc.creatorPlazas Tovar L.
dc.creatorWolf Maciel M.R.
dc.creatorMaciel Filho R.
dc.creatorBatistella C.B.
dc.creatorCelis Ariza O.J.
dc.creatorMedina L.C.
dc.date2012
dc.date2015-06-26T20:30:33Z
dc.date2015-11-26T14:31:14Z
dc.date2015-06-26T20:30:33Z
dc.date2015-11-26T14:31:14Z
dc.date.accessioned2018-03-28T21:34:36Z
dc.date.available2018-03-28T21:34:36Z
dc.identifier
dc.identifierOil And Gas Science And Technology. , v. 67, n. 3, p. 451 - 457, 2012.
dc.identifier12944475
dc.identifier10.2516/ogst/2011150
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84863939774&partnerID=40&md5=4ac48b667f82d0f06662ced839f1fe1a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97374
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97374
dc.identifier2-s2.0-84863939774
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247321
dc.descriptionThe processing and upgrading of high-boiling-point petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics) require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C from "W, Y and Z" crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization), the thermodynamic properties (molar mass and critical properties) and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure). The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. © 2012, IFP Energies nouvelles.
dc.description67
dc.description3
dc.description451
dc.description457
dc.descriptionAboul-Seoud, A.-L., Moharam, H.M., Short communication - A generalized viscosity correlation for undefined petroleum fractions (1999) Chem. Eng. J, 72 (3), pp. 253-256
dc.descriptionAboul-Seoud, A.-L., Moharam, H.M., A simple thermal conductivity-temperature correlation for undefined petroleum and coal liquid fractions (1999) Chem. Eng. Res. Des, 77 (3), pp. 248-252
dc.description(1992) Standard Test Method For API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). West Conshohoken, (Pennsylvania): ASTM International, p. 3. , American Society for Testing Materials, ASTM D 287, [Reapproved 2006]
dc.description(1999) Standard Test Method For Density, Relative Density (specific Gravity), Or API Gravity of Crude Petroleum and Liquid Petroleum Products By Hydrometer Method. West Conshohoken, (Pennsylvania): ASTM International, p. 6. , American Society for Testing Materials, ASTM D 1298, [Reapproved 2005]
dc.description(2005), p. 32. , American Society for Testing Material, ASTM D 2892. Standard test method for distillation of crude petroleum (15-Theoretical plate column), West Conshohoken, (Pennsylvania): ASTM InternationalBeer, E., Petroleum fractions characterization and breakdown into pseudocomponents (1994) Nafta, 45 (12), pp. 617-627
dc.descriptionBoozarjomehry, R.B., Abdolahi, F., Moosavian, M.A., Characterization of basic properties for pure substances and petroleum fractions by neural network (2005) Fluid Phase Equilibr, 231 (2), pp. 188-196
dc.descriptionCoats, K.H., Simulation of gas condensate reservoir performance (1985) J. Petrol. Technol, 37 (10), pp. 1870-1886
dc.descriptionDanesh, A., PVT and phase behavior of reservoir fluids (1998) Developments In Petroleum Science, , Elsevier Science, New York
dc.descriptionDaubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Oscarson, J.L., Zundel, N., Marshal, T.L., Wilding, W.V., (2000) Physical and Thermodynamic Properties of Pure Chemicals: DIPPR: Data Compilation, , 10th ed., Taylor and Francis
dc.descriptionDaubert, T.E., Danner, R.P., (1997) API Tecnhnical Data Book-petroleum Refining, , 6th ed., American Petroleum Institute (API), Washington, D.C
dc.descriptionEckert, E., Vaněk, T., New approach to the characterisation of petroleum mixtures used in the modelling of separation processes (2005) Comput. Chem. Eng, 30 (2), pp. 343-356
dc.descriptionEdmister, W.C., Applied hydrocarbon thermodynamics, Part 4: Compressibility factors and equations of state (1958) Petroleum Refiner, 37 (4), pp. 173-179
dc.descriptionGharagheizi, F., Fazeli, A., Prediction of the Watson characterization factor of hydrocarbon components from molecular properties (2008) QSAR Comb. Sci, 27 (6), pp. 758-767
dc.descriptionHu, S., Zhu, F.X.X., A general framework for incorporating molecular modelling into overall refinery optimisation (2001) Appl. Therm. Eng, 21 (13-14), pp. 1331-1348
dc.descriptionKesler, M.G., Lee, B.I., Improve Prediction of enthalpy of fractions (1976) Hydrocarbon Processing, 55 (3), pp. 153-158
dc.descriptionKorsten, H., Critical properties of hydrocarbon systems (1998) Chem. Eng. Technol, 21 (3), pp. 229-244
dc.descriptionLakshmi, D.S., Prasad, D.H.L., A rapid estimation method for thermal conductivity of pure liquids (1992) Chem. Eng. J, 48 (3), pp. 211-214
dc.descriptionLee, B.I., Kesler, M.G., A generalized thermodynamic correlation based on three-parameter corresponding states (1975) AIChE J, 21 (3), pp. 510-527
dc.descriptionLion, A.R., Edmister, W.C., Make equilibrium calculations by computer (1975) Hydrocarbon Processing, 54 (8), pp. 119-122
dc.descriptionMehrotra, A.K., A simple equation for predicting the viscosity of crude oil fractions (1995) Chem. Eng. Res. Des, 73 (1), pp. 87-90
dc.descriptionMehrotra, A.K., Monnery, W.D., Svrcek, W.Y., A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures (1996) Fluid Phase Equilib, 117 (1-2), pp. 344-355
dc.descriptionMerdrignac, I., Espinat, D., Physicochemical characterization of petroleum fractions: The state of the art (2007) Oil Gas Sci. Technol, 62 (1), pp. 7-32
dc.descriptionMiquel, J., Castells, F., Easy characterization of petroleum fractions (part 1) (1993) Hydrocarbon Processing, 72 (12), pp. 101-105
dc.descriptionMiquel, J., Castells, F., Easy characterization of petroleum fractions (part 2) (1994) Hydrocarbon Processing, 73 (1), pp. 99-109
dc.descriptionMoharam, H.M., Al-Mehaideb, R.A., Fahim, M.A., New correlation for predicting the viscosity of heavy petroleum fractions (1995) Fuel, 74 (12), pp. 1776-1779
dc.descriptionNichita, D.V., Pauly, J., Montel, F., Daridon, J.-L., Pseudocomponent delumping for multiphase system with waxy solid phase precipitation (2008) Energ. Fuel, 22 (2), pp. 775-783
dc.descriptionOurique, J.E., Telles, A.S., Estimation of properties of pure organic substances with group and pair contributions (1997) Brazilian J. Chem. Eng, 14 (2), pp. 1-17
dc.descriptionPanteli, E., Voutsas, E., Magoulas, K., Tassios, D., Prediction of vapor pressures and enthalpies of vaporization of organic compounds from the normal boiling point temperature (2006) Fluid Phase Equilib, 248 (1), pp. 70-77
dc.descriptionPasquini, C., Bueno, A.F., Characterization of petroleum using near-infrared spectroscopy: Quantitative modeling for the true boiling point curve and specif gravity (2007) Fuel, 86 (12-13), pp. 1927-1934
dc.descriptionPitzer, K.S., Lippmann, D.Z., Curl, R.F., Huggins, C.M., Petersen, D.E., The Volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization (1955) J. Am. Chem. Soc, 77 (13), pp. 3433-3440
dc.descriptionPoling, B.E., Prausnitz, J.M., O'Connel, J.P., (2001) The Properties of Gases and Liquids, , 5th ed., McGraw-Hill, New York
dc.descriptionQuann, R.J., Jaffe, S.B., Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures (1992) Ind. Eng. Chem. Res, 31 (11), pp. 2483-2497
dc.descriptionRiazi, M.R., (2004) Characterization and Properties of Petroleum Fractions, , ASTM International Standards Worldwide, Kuwait
dc.descriptionRiazi, M.R., Al-Sahhaf, T.A., (1996) Physical Properties of Heavy Petroleum Fractions and Crude Oils, Fluid Phase Equilib, 117 (1-2), pp. 217-224
dc.descriptionRiazi, M.R., Daubert, T.E., Simplify property predictions (1980) Hydrocarbon Processing, 59 (3), pp. 115-116
dc.descriptionRiazi, M.R., Faghri, A., Thermal conductivity of liquid and vapor hydrocarbon system: Pentanes and heavier at low pressures (1985) Ind. Eng. Chem. Process Des. Dev, 24 (2), pp. 398-401
dc.descriptionSatyro, M.A., Yarranton, H., Oil Characterization from simulation of experimental distillation data (2009) Energ. Fuel, 23 (8), pp. 3960-3970
dc.descriptionSchlijper, A.G., Simulation of compositional processes: The use of pseudocomponents in equation-of-state calculations (1986) SPE Reserv. Eng, 1 (5), pp. 441-452
dc.descriptionShouzhi, Y., Yuanyuan, J., Peisheng, M., Estimation of acentric factor of organic compounds with corresponding states group contribution method (2005) Chinese J. Chem. Eng, 13 (5), pp. 709-712
dc.descriptionWatson, K.M., Nelson, E.F., Improved methods for approximating critical and thermal properties of petroleum fractions (1933) Ind. Eng. Chem, 25 (8), pp. 880-887
dc.descriptionWatson, K.M., Nelson, E.F., Murphy, G.B., Characterization of petroleum fractions (1935) Ind. Eng. Chem, 27 (12), pp. 1460-1464
dc.descriptionWhitson, C.H., Brulé, M.R., (2000) Phase Behavior. SPE Monograph Series, , Richardson: Society of Petroleum Engineers, Inc., Texas
dc.descriptionWinn, W., Physical properties by nomogram (1955) Petroleum Refiner, 36 (2), pp. 157-159
dc.languageen
dc.languagefr
dc.publisher
dc.relationOil and Gas Science and Technology
dc.rightsfechado
dc.sourceScopus
dc.titleOverview And Computational Approach For Studying The Physicochemical Characterization Of High-boiling-point Petroleum Fractions (350°c+) [approche Informatique Pour L'étude Des Propriétés Physico-chimiques De Fraction Pétrolière Lourde (350°c+)]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución