dc.creator | Plazas Tovar L. | |
dc.creator | Wolf Maciel M.R. | |
dc.creator | Maciel Filho R. | |
dc.creator | Batistella C.B. | |
dc.creator | Celis Ariza O.J. | |
dc.creator | Medina L.C. | |
dc.date | 2012 | |
dc.date | 2015-06-26T20:30:33Z | |
dc.date | 2015-11-26T14:31:14Z | |
dc.date | 2015-06-26T20:30:33Z | |
dc.date | 2015-11-26T14:31:14Z | |
dc.date.accessioned | 2018-03-28T21:34:36Z | |
dc.date.available | 2018-03-28T21:34:36Z | |
dc.identifier | | |
dc.identifier | Oil And Gas Science And Technology. , v. 67, n. 3, p. 451 - 457, 2012. | |
dc.identifier | 12944475 | |
dc.identifier | 10.2516/ogst/2011150 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84863939774&partnerID=40&md5=4ac48b667f82d0f06662ced839f1fe1a | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/97374 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/97374 | |
dc.identifier | 2-s2.0-84863939774 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247321 | |
dc.description | The processing and upgrading of high-boiling-point petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics) require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C from "W, Y and Z" crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization), the thermodynamic properties (molar mass and critical properties) and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure). The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. © 2012, IFP Energies nouvelles. | |
dc.description | 67 | |
dc.description | 3 | |
dc.description | 451 | |
dc.description | 457 | |
dc.description | Aboul-Seoud, A.-L., Moharam, H.M., Short communication - A generalized viscosity correlation for undefined petroleum fractions (1999) Chem. Eng. J, 72 (3), pp. 253-256 | |
dc.description | Aboul-Seoud, A.-L., Moharam, H.M., A simple thermal conductivity-temperature correlation for undefined petroleum and coal liquid fractions (1999) Chem. Eng. Res. Des, 77 (3), pp. 248-252 | |
dc.description | (1992) Standard Test Method For API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). West Conshohoken, (Pennsylvania): ASTM International, p. 3. , American Society for Testing Materials, ASTM D 287, [Reapproved 2006] | |
dc.description | (1999) Standard Test Method For Density, Relative Density (specific Gravity), Or API Gravity of Crude Petroleum and Liquid Petroleum Products By Hydrometer Method. West Conshohoken, (Pennsylvania): ASTM International, p. 6. , American Society for Testing Materials, ASTM D 1298, [Reapproved 2005] | |
dc.description | (2005), p. 32. , American Society for Testing Material, ASTM D 2892. Standard test method for distillation of crude petroleum (15-Theoretical plate column), West Conshohoken, (Pennsylvania): ASTM InternationalBeer, E., Petroleum fractions characterization and breakdown into pseudocomponents (1994) Nafta, 45 (12), pp. 617-627 | |
dc.description | Boozarjomehry, R.B., Abdolahi, F., Moosavian, M.A., Characterization of basic properties for pure substances and petroleum fractions by neural network (2005) Fluid Phase Equilibr, 231 (2), pp. 188-196 | |
dc.description | Coats, K.H., Simulation of gas condensate reservoir performance (1985) J. Petrol. Technol, 37 (10), pp. 1870-1886 | |
dc.description | Danesh, A., PVT and phase behavior of reservoir fluids (1998) Developments In Petroleum Science, , Elsevier Science, New York | |
dc.description | Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Oscarson, J.L., Zundel, N., Marshal, T.L., Wilding, W.V., (2000) Physical and Thermodynamic Properties of Pure Chemicals: DIPPR: Data Compilation, , 10th ed., Taylor and Francis | |
dc.description | Daubert, T.E., Danner, R.P., (1997) API Tecnhnical Data Book-petroleum Refining, , 6th ed., American Petroleum Institute (API), Washington, D.C | |
dc.description | Eckert, E., Vaněk, T., New approach to the characterisation of petroleum mixtures used in the modelling of separation processes (2005) Comput. Chem. Eng, 30 (2), pp. 343-356 | |
dc.description | Edmister, W.C., Applied hydrocarbon thermodynamics, Part 4: Compressibility factors and equations of state (1958) Petroleum Refiner, 37 (4), pp. 173-179 | |
dc.description | Gharagheizi, F., Fazeli, A., Prediction of the Watson characterization factor of hydrocarbon components from molecular properties (2008) QSAR Comb. Sci, 27 (6), pp. 758-767 | |
dc.description | Hu, S., Zhu, F.X.X., A general framework for incorporating molecular modelling into overall refinery optimisation (2001) Appl. Therm. Eng, 21 (13-14), pp. 1331-1348 | |
dc.description | Kesler, M.G., Lee, B.I., Improve Prediction of enthalpy of fractions (1976) Hydrocarbon Processing, 55 (3), pp. 153-158 | |
dc.description | Korsten, H., Critical properties of hydrocarbon systems (1998) Chem. Eng. Technol, 21 (3), pp. 229-244 | |
dc.description | Lakshmi, D.S., Prasad, D.H.L., A rapid estimation method for thermal conductivity of pure liquids (1992) Chem. Eng. J, 48 (3), pp. 211-214 | |
dc.description | Lee, B.I., Kesler, M.G., A generalized thermodynamic correlation based on three-parameter corresponding states (1975) AIChE J, 21 (3), pp. 510-527 | |
dc.description | Lion, A.R., Edmister, W.C., Make equilibrium calculations by computer (1975) Hydrocarbon Processing, 54 (8), pp. 119-122 | |
dc.description | Mehrotra, A.K., A simple equation for predicting the viscosity of crude oil fractions (1995) Chem. Eng. Res. Des, 73 (1), pp. 87-90 | |
dc.description | Mehrotra, A.K., Monnery, W.D., Svrcek, W.Y., A review of practical calculation methods for the viscosity of liquid hydrocarbons and their mixtures (1996) Fluid Phase Equilib, 117 (1-2), pp. 344-355 | |
dc.description | Merdrignac, I., Espinat, D., Physicochemical characterization of petroleum fractions: The state of the art (2007) Oil Gas Sci. Technol, 62 (1), pp. 7-32 | |
dc.description | Miquel, J., Castells, F., Easy characterization of petroleum fractions (part 1) (1993) Hydrocarbon Processing, 72 (12), pp. 101-105 | |
dc.description | Miquel, J., Castells, F., Easy characterization of petroleum fractions (part 2) (1994) Hydrocarbon Processing, 73 (1), pp. 99-109 | |
dc.description | Moharam, H.M., Al-Mehaideb, R.A., Fahim, M.A., New correlation for predicting the viscosity of heavy petroleum fractions (1995) Fuel, 74 (12), pp. 1776-1779 | |
dc.description | Nichita, D.V., Pauly, J., Montel, F., Daridon, J.-L., Pseudocomponent delumping for multiphase system with waxy solid phase precipitation (2008) Energ. Fuel, 22 (2), pp. 775-783 | |
dc.description | Ourique, J.E., Telles, A.S., Estimation of properties of pure organic substances with group and pair contributions (1997) Brazilian J. Chem. Eng, 14 (2), pp. 1-17 | |
dc.description | Panteli, E., Voutsas, E., Magoulas, K., Tassios, D., Prediction of vapor pressures and enthalpies of vaporization of organic compounds from the normal boiling point temperature (2006) Fluid Phase Equilib, 248 (1), pp. 70-77 | |
dc.description | Pasquini, C., Bueno, A.F., Characterization of petroleum using near-infrared spectroscopy: Quantitative modeling for the true boiling point curve and specif gravity (2007) Fuel, 86 (12-13), pp. 1927-1934 | |
dc.description | Pitzer, K.S., Lippmann, D.Z., Curl, R.F., Huggins, C.M., Petersen, D.E., The Volumetric and thermodynamic properties of fluids. II. Compressibility factor, vapor pressure and entropy of vaporization (1955) J. Am. Chem. Soc, 77 (13), pp. 3433-3440 | |
dc.description | Poling, B.E., Prausnitz, J.M., O'Connel, J.P., (2001) The Properties of Gases and Liquids, , 5th ed., McGraw-Hill, New York | |
dc.description | Quann, R.J., Jaffe, S.B., Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures (1992) Ind. Eng. Chem. Res, 31 (11), pp. 2483-2497 | |
dc.description | Riazi, M.R., (2004) Characterization and Properties of Petroleum Fractions, , ASTM International Standards Worldwide, Kuwait | |
dc.description | Riazi, M.R., Al-Sahhaf, T.A., (1996) Physical Properties of Heavy Petroleum Fractions and Crude Oils, Fluid Phase Equilib, 117 (1-2), pp. 217-224 | |
dc.description | Riazi, M.R., Daubert, T.E., Simplify property predictions (1980) Hydrocarbon Processing, 59 (3), pp. 115-116 | |
dc.description | Riazi, M.R., Faghri, A., Thermal conductivity of liquid and vapor hydrocarbon system: Pentanes and heavier at low pressures (1985) Ind. Eng. Chem. Process Des. Dev, 24 (2), pp. 398-401 | |
dc.description | Satyro, M.A., Yarranton, H., Oil Characterization from simulation of experimental distillation data (2009) Energ. Fuel, 23 (8), pp. 3960-3970 | |
dc.description | Schlijper, A.G., Simulation of compositional processes: The use of pseudocomponents in equation-of-state calculations (1986) SPE Reserv. Eng, 1 (5), pp. 441-452 | |
dc.description | Shouzhi, Y., Yuanyuan, J., Peisheng, M., Estimation of acentric factor of organic compounds with corresponding states group contribution method (2005) Chinese J. Chem. Eng, 13 (5), pp. 709-712 | |
dc.description | Watson, K.M., Nelson, E.F., Improved methods for approximating critical and thermal properties of petroleum fractions (1933) Ind. Eng. Chem, 25 (8), pp. 880-887 | |
dc.description | Watson, K.M., Nelson, E.F., Murphy, G.B., Characterization of petroleum fractions (1935) Ind. Eng. Chem, 27 (12), pp. 1460-1464 | |
dc.description | Whitson, C.H., Brulé, M.R., (2000) Phase Behavior. SPE Monograph Series, , Richardson: Society of Petroleum Engineers, Inc., Texas | |
dc.description | Winn, W., Physical properties by nomogram (1955) Petroleum Refiner, 36 (2), pp. 157-159 | |
dc.language | en | |
dc.language | fr | |
dc.publisher | | |
dc.relation | Oil and Gas Science and Technology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Overview And Computational Approach For Studying The Physicochemical Characterization Of High-boiling-point Petroleum Fractions (350°c+) [approche Informatique Pour L'étude Des Propriétés Physico-chimiques De Fraction Pétrolière Lourde (350°c+)] | |
dc.type | Artículos de revistas | |