dc.creatorMegiatto Jr. J.D.
dc.creatorMendez-Hernandez D.D.
dc.creatorTejeda-Ferrari M.E.
dc.creatorTeillout A.-L.
dc.creatorLlansola-Portoles M.J.
dc.creatorKodis G.
dc.creatorPoluektov O.G.
dc.creatorRajh T.
dc.creatorMujica V.
dc.creatorGroy T.L.
dc.creatorGust D.
dc.creatorMoore T.A.
dc.creatorMoore A.L.
dc.date2014
dc.date2015-06-25T17:54:14Z
dc.date2015-11-26T14:31:05Z
dc.date2015-06-25T17:54:14Z
dc.date2015-11-26T14:31:05Z
dc.date.accessioned2018-03-28T21:34:28Z
dc.date.available2018-03-28T21:34:28Z
dc.identifier
dc.identifierNature Chemistry. Nature Publishing Group, v. 6, n. 5, p. 423 - 428, 2014.
dc.identifier17554330
dc.identifier10.1038/nchem1862
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84899082031&partnerID=40&md5=35b83a11a321623c1acb480e7a2c6954
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86635
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86635
dc.identifier2-s2.0-84899082031
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247283
dc.descriptionIn water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680 â €¢ +) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680 â €¢ +, the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation. Here, we show that an artificial reaction centre that features a benzimidazole-phenol model of the Tyr-His pair mimics both the short-internal hydrogen bond in photosystem II and, using electron paramagnetic resonance spectroscopy, the thermal relaxation that accompanies proton-coupled electron transfer. Although this artificial system is much less complex than the natural one, theory suggests that it captures the essential features that are important in the function of the relay. © 2014 Macmillan Publishers Limited. All rights reserved.
dc.description6
dc.description5
dc.description423
dc.description428
dc.descriptionBabcock, G.T., Water oxidation in photosystem II: From radical chemistry to multielectron chemistry (1989) Biochemistry, 28, pp. 9557-9565
dc.descriptionZouni, A., Crystal structure of photosystem II from Synechococcus elongatus at 3.8 resolution (2000) Nature, 409, pp. 739-743
dc.descriptionUmena, Y., Kawakami, K., Shen, J.-R., Kamiya, N., Crystal structure of oxygenevolving photosystem II at a resolution of 1.9 (2011) Nature, 473, pp. 55-60
dc.descriptionBarry, B.A., Babcock, G.T., Tyrosine radicals are involved in the photosynthetic oxygen-evolving system (1987) Proc. Natl Acad. Sci. USA, 84, pp. 7099-7103
dc.descriptionMamedov, F., Sayre, R.T., Styring, S., Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II (1998) Biochemistry, 37, pp. 14245-14256
dc.descriptionHays, A.A.-M., Vassiliev, I.R., Golbeck, J.H., Debus, R.J., Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: A chemical complementation study (1998) Biochemistry, 37, pp. 11352-11365
dc.descriptionMeyer, T.J., Hang, M., Huynh, V., Thorp, H.H., The role of proton coupled electron transfer (PCET) in water oxidation by photosystem II. Wiring for protons (2007) Angew. Chem. Int. Ed, 46, pp. 5284-5304
dc.descriptionBarry, B.A., Proton coupled electron transfer and redox active tyrosines in photosystem II (2011) J. Photochem. Photobiol. B, 104, pp. 60-71
dc.descriptionHammarstom, L., Styring, S., Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosyn thesis: The role of a redox-active link between catalyst and photosensitizer (2011) Energy Environ. Sci, 4, pp. 2379-2388
dc.descriptionStyring, S., Sjoholm, J., Mamedov, F., Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II (2012) Biochim. Biophys. Acta, 1817, pp. 7-87
dc.descriptionFaller, P., Rapid formation of the stable tyrosyl radical in photosystem II (2001) Proc. Natl Acad. Sci. USA, 98, pp. 14368-14373
dc.descriptionRappaport, F., Probing the coupling between proton and electron transfer in photosystem II core complexes containing a 3-fluorotyrosine (2009) J. Am. Chem. Soc, 131, pp. 4425-4433
dc.descriptionStubbe, J.A., Van Der Donk, W.A., Protein radicals in enzyme catalysis (1998) Chem. Rev, 98, pp. 705-762
dc.descriptionFaller, P., Rutherford, A.W., Debus, R.J., Tyrosine D oxidation at cryogenic temperature in photosystem II (2002) Biochemistry, 41, pp. 12914-12920
dc.descriptionFaller, P., Goussias, C., Rutherford, A.W., Un, S., Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement (2003) Proc. Natl Acad. Sci. USA, 100, pp. 8732-8735
dc.descriptionGust, D., Moore, T.A., Moore, A.L., Realizing artificial photosynthesis (2012) Faraday Discuss, 155, pp. 9-26
dc.descriptionGust, D., Moore, T.A., Moore, A.L., Molecular mimicry of photosynthetic energy and electron transfer (1993) Acc. Chem. Res, 26, pp. 198-205
dc.descriptionMegiatto Jr., J.D., Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation (2012) Proc. Natl Acad. Sci. USA, 109, pp. 15578-15583
dc.descriptionRajh, T., Nedeljkovic, J.M., Chen, L.X., Poluektov, O., Thurnauer, M.C., Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C (1999) J. Phys. Chem. B, 103, pp. 3515-3519
dc.descriptionMoore, G.F., A bioinspired construct that mimics the proton coupled electron transfer between P680 and the TyrZ-His190 pair of photosystem II (2008) J. Am. Chem. Soc, 130, pp. 10466-10467
dc.descriptionStone, A.J., Gfactors of aromatic free radicals (1963) Mol. Phys, 6, pp. 509-515
dc.descriptionSmirnova, T.I., Smirnov, A.I., Paschenko, S.V., Poluektov, O.G., Geometry of hydrogen bonds formed by lipid bilayer nitroxide probes: A high-frequency pulsed ENDOR/EPR study (2007) J. Am. Chem. Soc, 129, pp. 3476-3477
dc.descriptionOrio, M., Geometric and electronic structures of phenoxyl radicals hydrogen bonded to neutral and cationic partners (2012) Chem. Eur. J, 18, pp. 5416-5429
dc.descriptionThomas, F., How single and bifurcated hydrogen bonds influence protonmigration rate constants, redox, and electronic properties of phenoxyl radicals (2004) Angew. Chem. Int. Ed, 43, pp. 594-597
dc.descriptionBenisvy, L., Phenoxyl radicals hydrogen-bonded to imidazolium: Analogues of Tyrosyl D of photosystem II: High-field EPR and DFT studies (2005) Angew. Chem. Int. Ed, 44, pp. 5314-5317
dc.descriptionUn, S., Atta, M., Fontecave, M., Rutherford, A.W., G-Values as a probe of the local protein environment: High-field EPR of tyrosyl radicals in ribonucleotide reductase and photosystem II (1995) J. Am. Chem. Soc, 117, pp. 10713-10719
dc.descriptionUn, S., Gerez, C., Elleingand, E., Fontecave, M., Sensitivity of tyrosyl radical g-values to changes in protein structure: A high-field EPR study of mutants of ribonucleotide reductase (2001) J. Am. Chem. Soc, 123, pp. 3048-3054
dc.descriptionSaito, K., Shen, J.-R., Ishida, T., Ishikita, H., Short hydrogen bond between redox-active tyrosine YZ and D1-His190 in the photosystem II crystal structure (2011) Biochemistry, 50, pp. 9836-9844
dc.descriptionSibert, R., Proton-coupled electron transfer in a biomimetic peptide as a model of enzyme regulatory mechanisms (2007) J. Am. Chem. Soc, 129, pp. 4393-4400
dc.descriptionMarkle, T.F., Rhile, I.J., Dipasquale, A.G., Mayer, J.M., Probing concerted proton-electron transfer in phenol-imidazoles (2008) Proc. Natl Acad. Sci. USA, 105, pp. 8185-8190
dc.descriptionCostentin, C., Robert, M., Saveant, J.-M., Electrochemical and homogeneous proton-coupled electron transfers: Concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer (2006) J. Am. Chem. Soc, 128, pp. 4552-4553
dc.descriptionFecenko, C.J., Thorp, H.H., Meyer, T.J., The role of free energy change in coupled electron-proton transfer (2007) J. Am. Chem. Soc, 129, pp. 15098-15099
dc.descriptionHammes-Schiffer, S., Theory of proton-coupled electron transfer in energy conversion processes (2009) Acc. Chem. Res, 42, pp. 1881-1889
dc.descriptionPerrin, C.L., Nielson, J.B., Strong hydrogen bonds in chemistry and biology (1997) Annu. Rev. Phys. Chem, 48, pp. 511-544
dc.descriptionMegiatto, Jr.J.D., Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis (2012) Chem. Commun, 48, pp. 4558-4560
dc.descriptionNurminen, E.J., Mattinen, J.K., Lonnberg, H., Nucleophilic and acid catalysis in phosphoramidite alcoholysis (2001) J. Chem. Soc. Perkin Trans, 2, pp. 2159-2165
dc.descriptionMoore, G.F., Effects of protonation state on a tyrosine-histidine bioinspired redox mediator (2010) J. Phys. Chem. B, 114, pp. 14450-14457
dc.descriptionEdwards, J.S., Soudackov, A.V., Hammes-Schiffer, S., Analysis of kinetic isotope effects for proton-coupled electron transfer reactions (2009) J. Phys. Chem. A, 113, pp. 2117-2126
dc.descriptionWitwicki, M., Jezierska, J., Protic and aprotic solvent effect on molecular properties and g-tensors of o-semiquinones with various aromacity and heteroatoms: A DFT study (2010) Chem. Phys. Lett, 493, pp. 364-370
dc.descriptionWitwicki, M., Jezierska, J., Ozarowski, A., Solvent effect on EPR, molecular and electronic properties of semiquinone radical derived from 3,4-dihydroxybenzoic acid as model for humic acid transient radicals: High-field EPR and DFT studies (2009) Chem. Phys. Lett, 473, pp. 160-166
dc.descriptionBarry, B.A., Proton-coupled electron transfer and redox active tyrosines: Structure and function of tyrosyl radicals in ribonucleotide reductase and photosystem II (2012) J. Phys. Chem. Lett, 3, pp. 534-554
dc.descriptionJenson, D.L., Barry, B.A., Proton-coupled electron transfer in photosystem II: Proton inventory of a redox active tyrosine (2009) J. Am. Chem. Soc, 131, pp. 10567-10573
dc.descriptionChatterjee, R., High-frequency electron nuclear double-resonance spectroscopy studies of the mechanism of proton-coupled electron transfer at the tyrosine-D residue of photosystem II (2013) Biochemistry, 52, pp. 4781-4790
dc.descriptionZhao, Y., Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator (2012) Proc. Natl Acad. Sci. USA, 109, pp. 15612-15616
dc.descriptionRajh, T., Ostafin, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C., Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study (1996) J. Phys. Chem, 100, pp. 4538-4545
dc.descriptionLakshmi, K.V., High-field EPR study of carotenoid and chlorophyll cation radicals in photosystem II (2000) J. Phys. Chem. B, 104, pp. 10445-10448
dc.languageen
dc.publisherNature Publishing Group
dc.relationNature Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleA Bioinspired Redox Relay That Mimics Radical Interactions Of The Tyr-his Pairs Of Photosystem Ii
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución