dc.creator | Megiatto Jr. J.D. | |
dc.creator | Mendez-Hernandez D.D. | |
dc.creator | Tejeda-Ferrari M.E. | |
dc.creator | Teillout A.-L. | |
dc.creator | Llansola-Portoles M.J. | |
dc.creator | Kodis G. | |
dc.creator | Poluektov O.G. | |
dc.creator | Rajh T. | |
dc.creator | Mujica V. | |
dc.creator | Groy T.L. | |
dc.creator | Gust D. | |
dc.creator | Moore T.A. | |
dc.creator | Moore A.L. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:54:14Z | |
dc.date | 2015-11-26T14:31:05Z | |
dc.date | 2015-06-25T17:54:14Z | |
dc.date | 2015-11-26T14:31:05Z | |
dc.date.accessioned | 2018-03-28T21:34:28Z | |
dc.date.available | 2018-03-28T21:34:28Z | |
dc.identifier | | |
dc.identifier | Nature Chemistry. Nature Publishing Group, v. 6, n. 5, p. 423 - 428, 2014. | |
dc.identifier | 17554330 | |
dc.identifier | 10.1038/nchem1862 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84899082031&partnerID=40&md5=35b83a11a321623c1acb480e7a2c6954 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86635 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86635 | |
dc.identifier | 2-s2.0-84899082031 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1247283 | |
dc.description | In water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680 â €¢ +) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680 â €¢ +, the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation. Here, we show that an artificial reaction centre that features a benzimidazole-phenol model of the Tyr-His pair mimics both the short-internal hydrogen bond in photosystem II and, using electron paramagnetic resonance spectroscopy, the thermal relaxation that accompanies proton-coupled electron transfer. Although this artificial system is much less complex than the natural one, theory suggests that it captures the essential features that are important in the function of the relay. © 2014 Macmillan Publishers Limited. All rights reserved. | |
dc.description | 6 | |
dc.description | 5 | |
dc.description | 423 | |
dc.description | 428 | |
dc.description | Babcock, G.T., Water oxidation in photosystem II: From radical chemistry to multielectron chemistry (1989) Biochemistry, 28, pp. 9557-9565 | |
dc.description | Zouni, A., Crystal structure of photosystem II from Synechococcus elongatus at 3.8 resolution (2000) Nature, 409, pp. 739-743 | |
dc.description | Umena, Y., Kawakami, K., Shen, J.-R., Kamiya, N., Crystal structure of oxygenevolving photosystem II at a resolution of 1.9 (2011) Nature, 473, pp. 55-60 | |
dc.description | Barry, B.A., Babcock, G.T., Tyrosine radicals are involved in the photosynthetic oxygen-evolving system (1987) Proc. Natl Acad. Sci. USA, 84, pp. 7099-7103 | |
dc.description | Mamedov, F., Sayre, R.T., Styring, S., Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II (1998) Biochemistry, 37, pp. 14245-14256 | |
dc.description | Hays, A.A.-M., Vassiliev, I.R., Golbeck, J.H., Debus, R.J., Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: A chemical complementation study (1998) Biochemistry, 37, pp. 11352-11365 | |
dc.description | Meyer, T.J., Hang, M., Huynh, V., Thorp, H.H., The role of proton coupled electron transfer (PCET) in water oxidation by photosystem II. Wiring for protons (2007) Angew. Chem. Int. Ed, 46, pp. 5284-5304 | |
dc.description | Barry, B.A., Proton coupled electron transfer and redox active tyrosines in photosystem II (2011) J. Photochem. Photobiol. B, 104, pp. 60-71 | |
dc.description | Hammarstom, L., Styring, S., Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosyn thesis: The role of a redox-active link between catalyst and photosensitizer (2011) Energy Environ. Sci, 4, pp. 2379-2388 | |
dc.description | Styring, S., Sjoholm, J., Mamedov, F., Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II (2012) Biochim. Biophys. Acta, 1817, pp. 7-87 | |
dc.description | Faller, P., Rapid formation of the stable tyrosyl radical in photosystem II (2001) Proc. Natl Acad. Sci. USA, 98, pp. 14368-14373 | |
dc.description | Rappaport, F., Probing the coupling between proton and electron transfer in photosystem II core complexes containing a 3-fluorotyrosine (2009) J. Am. Chem. Soc, 131, pp. 4425-4433 | |
dc.description | Stubbe, J.A., Van Der Donk, W.A., Protein radicals in enzyme catalysis (1998) Chem. Rev, 98, pp. 705-762 | |
dc.description | Faller, P., Rutherford, A.W., Debus, R.J., Tyrosine D oxidation at cryogenic temperature in photosystem II (2002) Biochemistry, 41, pp. 12914-12920 | |
dc.description | Faller, P., Goussias, C., Rutherford, A.W., Un, S., Resolving intermediates in biological proton-coupled electron transfer: A tyrosyl radical prior to proton movement (2003) Proc. Natl Acad. Sci. USA, 100, pp. 8732-8735 | |
dc.description | Gust, D., Moore, T.A., Moore, A.L., Realizing artificial photosynthesis (2012) Faraday Discuss, 155, pp. 9-26 | |
dc.description | Gust, D., Moore, T.A., Moore, A.L., Molecular mimicry of photosynthetic energy and electron transfer (1993) Acc. Chem. Res, 26, pp. 198-205 | |
dc.description | Megiatto Jr., J.D., Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation (2012) Proc. Natl Acad. Sci. USA, 109, pp. 15578-15583 | |
dc.description | Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluektov, O., Thurnauer, M.C., Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C (1999) J. Phys. Chem. B, 103, pp. 3515-3519 | |
dc.description | Moore, G.F., A bioinspired construct that mimics the proton coupled electron transfer between P680 and the TyrZ-His190 pair of photosystem II (2008) J. Am. Chem. Soc, 130, pp. 10466-10467 | |
dc.description | Stone, A.J., Gfactors of aromatic free radicals (1963) Mol. Phys, 6, pp. 509-515 | |
dc.description | Smirnova, T.I., Smirnov, A.I., Paschenko, S.V., Poluektov, O.G., Geometry of hydrogen bonds formed by lipid bilayer nitroxide probes: A high-frequency pulsed ENDOR/EPR study (2007) J. Am. Chem. Soc, 129, pp. 3476-3477 | |
dc.description | Orio, M., Geometric and electronic structures of phenoxyl radicals hydrogen bonded to neutral and cationic partners (2012) Chem. Eur. J, 18, pp. 5416-5429 | |
dc.description | Thomas, F., How single and bifurcated hydrogen bonds influence protonmigration rate constants, redox, and electronic properties of phenoxyl radicals (2004) Angew. Chem. Int. Ed, 43, pp. 594-597 | |
dc.description | Benisvy, L., Phenoxyl radicals hydrogen-bonded to imidazolium: Analogues of Tyrosyl D of photosystem II: High-field EPR and DFT studies (2005) Angew. Chem. Int. Ed, 44, pp. 5314-5317 | |
dc.description | Un, S., Atta, M., Fontecave, M., Rutherford, A.W., G-Values as a probe of the local protein environment: High-field EPR of tyrosyl radicals in ribonucleotide reductase and photosystem II (1995) J. Am. Chem. Soc, 117, pp. 10713-10719 | |
dc.description | Un, S., Gerez, C., Elleingand, E., Fontecave, M., Sensitivity of tyrosyl radical g-values to changes in protein structure: A high-field EPR study of mutants of ribonucleotide reductase (2001) J. Am. Chem. Soc, 123, pp. 3048-3054 | |
dc.description | Saito, K., Shen, J.-R., Ishida, T., Ishikita, H., Short hydrogen bond between redox-active tyrosine YZ and D1-His190 in the photosystem II crystal structure (2011) Biochemistry, 50, pp. 9836-9844 | |
dc.description | Sibert, R., Proton-coupled electron transfer in a biomimetic peptide as a model of enzyme regulatory mechanisms (2007) J. Am. Chem. Soc, 129, pp. 4393-4400 | |
dc.description | Markle, T.F., Rhile, I.J., Dipasquale, A.G., Mayer, J.M., Probing concerted proton-electron transfer in phenol-imidazoles (2008) Proc. Natl Acad. Sci. USA, 105, pp. 8185-8190 | |
dc.description | Costentin, C., Robert, M., Saveant, J.-M., Electrochemical and homogeneous proton-coupled electron transfers: Concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer (2006) J. Am. Chem. Soc, 128, pp. 4552-4553 | |
dc.description | Fecenko, C.J., Thorp, H.H., Meyer, T.J., The role of free energy change in coupled electron-proton transfer (2007) J. Am. Chem. Soc, 129, pp. 15098-15099 | |
dc.description | Hammes-Schiffer, S., Theory of proton-coupled electron transfer in energy conversion processes (2009) Acc. Chem. Res, 42, pp. 1881-1889 | |
dc.description | Perrin, C.L., Nielson, J.B., Strong hydrogen bonds in chemistry and biology (1997) Annu. Rev. Phys. Chem, 48, pp. 511-544 | |
dc.description | Megiatto, Jr.J.D., Intramolecular hydrogen bonding as a synthetic tool to induce chemical selectivity in acid catalyzed porphyrin synthesis (2012) Chem. Commun, 48, pp. 4558-4560 | |
dc.description | Nurminen, E.J., Mattinen, J.K., Lonnberg, H., Nucleophilic and acid catalysis in phosphoramidite alcoholysis (2001) J. Chem. Soc. Perkin Trans, 2, pp. 2159-2165 | |
dc.description | Moore, G.F., Effects of protonation state on a tyrosine-histidine bioinspired redox mediator (2010) J. Phys. Chem. B, 114, pp. 14450-14457 | |
dc.description | Edwards, J.S., Soudackov, A.V., Hammes-Schiffer, S., Analysis of kinetic isotope effects for proton-coupled electron transfer reactions (2009) J. Phys. Chem. A, 113, pp. 2117-2126 | |
dc.description | Witwicki, M., Jezierska, J., Protic and aprotic solvent effect on molecular properties and g-tensors of o-semiquinones with various aromacity and heteroatoms: A DFT study (2010) Chem. Phys. Lett, 493, pp. 364-370 | |
dc.description | Witwicki, M., Jezierska, J., Ozarowski, A., Solvent effect on EPR, molecular and electronic properties of semiquinone radical derived from 3,4-dihydroxybenzoic acid as model for humic acid transient radicals: High-field EPR and DFT studies (2009) Chem. Phys. Lett, 473, pp. 160-166 | |
dc.description | Barry, B.A., Proton-coupled electron transfer and redox active tyrosines: Structure and function of tyrosyl radicals in ribonucleotide reductase and photosystem II (2012) J. Phys. Chem. Lett, 3, pp. 534-554 | |
dc.description | Jenson, D.L., Barry, B.A., Proton-coupled electron transfer in photosystem II: Proton inventory of a redox active tyrosine (2009) J. Am. Chem. Soc, 131, pp. 10567-10573 | |
dc.description | Chatterjee, R., High-frequency electron nuclear double-resonance spectroscopy studies of the mechanism of proton-coupled electron transfer at the tyrosine-D residue of photosystem II (2013) Biochemistry, 52, pp. 4781-4790 | |
dc.description | Zhao, Y., Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator (2012) Proc. Natl Acad. Sci. USA, 109, pp. 15612-15616 | |
dc.description | Rajh, T., Ostafin, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C., Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: An EPR study (1996) J. Phys. Chem, 100, pp. 4538-4545 | |
dc.description | Lakshmi, K.V., High-field EPR study of carotenoid and chlorophyll cation radicals in photosystem II (2000) J. Phys. Chem. B, 104, pp. 10445-10448 | |
dc.language | en | |
dc.publisher | Nature Publishing Group | |
dc.relation | Nature Chemistry | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | A Bioinspired Redox Relay That Mimics Radical Interactions Of The Tyr-his Pairs Of Photosystem Ii | |
dc.type | Artículos de revistas | |