dc.creatorCarnielli W.
dc.creatorConiglio M.E.
dc.creatorPodiacki R.
dc.creatorRodrigues T.
dc.date2014
dc.date2015-06-25T17:54:13Z
dc.date2015-11-26T14:31:01Z
dc.date2015-06-25T17:54:13Z
dc.date2015-11-26T14:31:01Z
dc.date.accessioned2018-03-28T21:34:25Z
dc.date.available2018-03-28T21:34:25Z
dc.identifier
dc.identifierReview Of Symbolic Logic. Cambridge University Press, v. 7, n. 3, p. 548 - 578, 2014.
dc.identifier17550203
dc.identifier10.1017/S1755020314000148
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84916226649&partnerID=40&md5=6cd5842ff065dc1c7c2d66c3648398ea
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86633
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86633
dc.identifier2-s2.0-84916226649
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247272
dc.descriptionThis paper investigates the question of characterizing first-order LFIs (logics of formal inconsistency) by means of two-valued semantics. LFIs are powerful paraconsistent logics that encode classical logic and permit a finer distinction between contradictions and inconsistencies, with a deep involvement in philosophical and foundational questions. Although focused on just one particular case, namely, the quantified logic QmbC, the method proposed here is completely general for this kind of logics, and can be easily extended to a large family of quantified paraconsistent logics, supplying a sound and complete semantical interpretation for such logics. However, certain subtleties involving term substitution and replacement, that are hidden in classical structures, have to be taken into account when one ventures into the realm of nonclassical reasoning. This paper shows how such difficulties can be overcome, and offers detailed proofs showing that a smooth treatment of semantical characterization can be given to all such logics. Although the paper is well-endowed in technical details and results, it has a significant philosophical aside: it shows how slight extensions of classical methods can be used to construct the basic model theory of logics that are weaker than traditional logic due to the absence of certain rules present in classical logic. Several such logics, however, as in the case of the LFIs treated here, are notorious for their wealth of models precisely because they do not make indiscriminate use of certain rules; these models thus require new methods. In the case of this paper, by just appealing to a refined version of the Principle of Explosion, or Pseudo-Scotus, some new constructions and crafty solutions to certain nonobvious subtleties are proposed. The result is that a richer extension of model theory can be inaugurated, with interest not only for paraconsistency, but hopefully to other enlargements of traditional logic.
dc.description7
dc.description3
dc.description548
dc.description578
dc.descriptionAlves, E., Paraconsistent logic and model theory (1984) Studia Logica, 43 (1-2), pp. 17-32
dc.descriptionAvron, A., Lev, I., Canonical propositional Gentzen-type syst ems (2001) Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001). Lecture Notes in Artificial Intelligence (LNAI, 2083, pp. 529-544. , In Gore, R., Leitsch, A., & Nipkow, T., editors. Berlin: Springer Verlag
dc.descriptionAvron, A., Lev, I., Non-deterministic multi-valued structures (2005) Journal of Logic and Computation, 15, pp. 241-261
dc.descriptionAvron, A., Zamansky, A., Man y-valued non-deterministic semantics for firstorder logics of formal (in)consistency (2007) Algebraic and Proof-theoretic Aspects of Non-classical Logics. Papers in Honor of Daniele Mundici on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, 4460, pp. 1-24. , In Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., & Marra, V., editors. Berlin: Springer Verlag
dc.descriptionCarnielli, W., Coniglio, M.E., Paraconsistent set theory by predic ating on consistency (2013) Journal of Logic and Computation, , First published online: July 9 2013
dc.descriptionCarnielli, W., Coniglio, M.E., Swap structures for LFI's (2014) CLE E-Prints, 14 (1). , http://www.cle.unicamp.br/e-prints/vol-14,n-1,2014.html, Available from
dc.descriptionCarnielli, W., Coniglio, M.E., Marcos, J., Logics of formal inconsistency (2007) Handbook of Philosophical Logic, 14, pp. 1-93. , In Gabbay, D. & Guenthner, F., editors. 2nd. edition Dordrecht Springer
dc.descriptionCarnielli, W.A., Marcos, J., A taxonomy of C-systems (2002) Paraconsistency: The Logical Way to the Inconsistent. Proceedings of the 2nd World Congress on Paraconsistency (WCP 2000). Lecture Notes in Pure and Applied Mathematics, 228, pp. 1-94. , In Carnielli, W. A., Coniglio, M. E., & Ottaviano, I. M. L. D., editors. New York, Marcel Dekker
dc.descriptionCarnielli, W.A., Marcos, J., De Amo, S., Formal inconsistency and evolutionary databases (2000) Logic and Logical Philosophy, 8, pp. 115-152
dc.descriptionChang, C.C., Keisler, H.J., (1990) Model Theory (Third Ed.). Studies in Logic and the Foundations of Mathematics, 73. , Amsterdam Elsevier
dc.descriptionConiglio, M.E., Silvestrini, L.H., An alternative approach for quasi-truth (2014) Logic Journal of the IGPL, 22 (2), pp. 387-410
dc.descriptionDa Costa, N.C.A., (1963) Sistemas Formais Inconsistentes (Inconsistent Formal Systems, in Portuguese), , Habilitation thesis Universidade Federal do Paraná , Curitiba, Brazil. Republished by Editora UFPR, Curitiba, Brazil, 1993
dc.descriptionDa Costa, N.C.A., On the theory of inconsistent formal systems (Lecture delivered at the First Latin-American Colloquium on Mathematical Logic held at Santiago, Chile July 1970) (1974) Notre Dame Journal of Formal Logic, 15 (4), pp. 497-510
dc.descriptionDa Costa, N.C.A., Alves, E., A semantical analysis of the calculi Cn (1977) Notre Dame Journal of Formal Logic, 18 (4), pp. 621-630
dc.descriptionD'Ottaviano, I.M.L., (1982) Sobre Uma Teoria de Modelos Trivalente (On A Three-valued Model Theory, in Portuguese), , Ph. D. thesis, IMECC-State University of Campinas, Brazil
dc.descriptionD'Ottaviano, I.M.L., The completeness and compactness of a three-valued first o rder logic (1985) Revista Colombiana de Matemáticas, 19 (1-2), pp. 31-42
dc.descriptionD'Ottaviano, I.M.L., The model extension theorems for J3-theories (1985) Methods in Mathematical Logic. Proceedings of the 6th Latin American Symposium on Mathematical Logic Held in Caracas, p. 1983. , In Di Prisco C. A., editor. Venezuela, Aug. 1-6
dc.descriptionLecture Notes in Mathematics, 1130, pp. 157-173. , Berlin: Springer-Verlag
dc.descriptionD'Ottaviano, I.M.L., Definability and quantifier elimination for J3-theories (1987) Studia Logica, 46 (1), pp. 37-54
dc.descriptionD'Ottaviano, I.M.L., Da Costa, N.C.A., Sur un problème de Jáskowski (1970) Comptes Rendus de l'Académie de Sciences de Paris (A-B, 270, pp. 1349-1353
dc.descriptionHodges, W., Scanlon, T., First-order model theory (2013) The Stanford Encyclopedia of Philosophy, , http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=modeltheory-fo, In Zalta, E. N., editor. Fall 2013 ed. Av ailable from
dc.descriptionMendelson, E., (1987) Introduction to Mathematical Logic, pp. 41-44. , Third ed New York, Chapman & Hall
dc.descriptionMikenberg, I., Da Costa, N.C.A., Chuaqui, R., Pragmatic truth and approximation to truth (1986) The Journal of Symbolic Logic, 51 (1), pp. 201-221
dc.descriptionPodiacki, R., (2008) Lógicas da Inconsistência Formal Quantificadas (Quantified Logics of Formal Inconsistency, in Portuguese), , Masters thesis IFCH-State University of Campinas, Brazil
dc.descriptionPriest, G., (2006) Contradiction: A Study of the Transconsistent, pp. 76-78. , (2nd ed.). Oxford: Oxford University Press
dc.descriptionRodrigues, T.G., (2010) Sobre Os Fundamentos da Programação Lógica Paraconsistente (On the Foundations of Paraconsistent Logic Programming, in Portuguese)., , Mas ters thesis, IFCH-State University of Campinas, Brazil
dc.descriptionShoenfield, J.R., (1967) Mathematical Logic., pp. 9-17. , Reading, MA Addison-Wesley
dc.descriptionWójcicki, R., Lectures on propositional calculi (1984) Theorem 22.2, pp. 54-55. , http://www.ifispan.waw.pl/studialogica/wojcicki/papers.html, Wroclaw Poland: Ossolineum Available from
dc.languageen
dc.publisherCambridge University Press
dc.relationReview of Symbolic Logic
dc.rightsaberto
dc.sourceScopus
dc.titleOn The Way To A Wider Model Theory: Completeness Theorems For First-order Logics Of Formal Inconsistency
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución