dc.creatorBarra T.V.
dc.creatorJunqueira C.
dc.creatorVon Zuben F.J.
dc.date2007
dc.date2015-06-30T18:39:54Z
dc.date2015-11-26T14:30:55Z
dc.date2015-06-30T18:39:54Z
dc.date2015-11-26T14:30:55Z
dc.date.accessioned2018-03-28T21:34:17Z
dc.date.available2018-03-28T21:34:17Z
dc.identifier1424406617; 9781424406616
dc.identifierSbmo/ieee Mtt-s International Microwave And Optoelectronics Conference Proceedings. , v. , n. , p. 329 - 333, 2007.
dc.identifier
dc.identifier10.1109/IMOC.2007.4404274
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-50449092151&partnerID=40&md5=964ae6cf297f04e887431f83d16406a6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104225
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104225
dc.identifier2-s2.0-50449092151
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247242
dc.descriptionThe automatic design of microstrip antennas involves a series of continuous parameters to be optimized and multiple objectives to be simultaneously fulfilled. When the shape of the patch is admitted to be amorphous, discrete parameters are added to the optimization stage. Here, we are proposing a hybrid-coded genetic algorithm to implement the search engine. Due to the existence of several attributes of the antenna to be simultaneously optimized, and given that they keep intricate relations among each other, the design process incorporates a comparative analysis of the electromagnetic properties presented by the obtained theoretical configuration and the effective response produced by the corresponding physical prototype. © 2007 IEEE.
dc.description
dc.description
dc.description329
dc.description333
dc.descriptionBahl, I., Bhartia, P., (1980) Microstrip Antennas, , Artech House
dc.descriptionPosar, D.M., Schaubert, D.H., (1995) Microstrip Antennas, New Y, , IEEE Press
dc.descriptionSplitt, G., (1993) Efficient numerical Techniques for the analysis of complex microstrip antennas and arrays, , PhD dissertation, European space Agency -TT-1259
dc.descriptionKaemakar, N.C., Bialkowski, M.E., Experimental investigations into an electromagnetically coupled microstrip patch antenna (1992) Microwave and Optical Technology Letters5(9): 447-453
dc.descriptionSplitt, G., Davidovits, M., Guidelines for design of electromagnetically coupled microstrip patch antennas in two layer substrates (1997) Antennas and Propagation Magazine, IEEE, 45 (7), pp. 1117-1122
dc.descriptionDelabie, C., Villegas, M., Picon, O., Creation of new shapes for resonant microstrip structures by means of genetic algorithms (1997) Electronics Letters, 33 (18). , Aug
dc.descriptionJohnson, J.M., Rahmat-Samii, Y., (1999) Electromagnetic Optimization by Genetic Algorithms, , New York: Wiley-Interscience
dc.descriptionChoo, H., Hutani, A., Trintinalia, L.C., Ling, H., Shape optimization of broadband microstrip antennas using genetic algorithm (2000) Electronics Letters, 36 (25). , Dec
dc.descriptionBack, T., Fogel, D.B., Michalewicz, Z., (2000) Evolutionary Computation I e II, , Bristol: Institute of Physics Publishing
dc.descriptionBarra, T., (2007) An Evolutionary Framework for Microstrip Antennas, , Master Thesis, University of Campinas UNICAMP, Campinas, Brazil, Jan, In Portuguese
dc.descriptionD. E. Goldberg Genetic Algorithms in Search, Optimization, and Machine Learning. New York: A. W. 1989J. H. Holland Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975
dc.languageen
dc.publisher
dc.relationSBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleOptimizing Amorphous-shape Microstrip Antennas
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución