dc.creatorCoelho G.P.
dc.creatorVon Zuben F.J.
dc.creatorDa Silva A.E.A.
dc.date2007
dc.date2015-06-30T18:39:33Z
dc.date2015-11-26T14:30:50Z
dc.date2015-06-30T18:39:33Z
dc.date2015-11-26T14:30:50Z
dc.date.accessioned2018-03-28T21:34:12Z
dc.date.available2018-03-28T21:34:12Z
dc.identifier0769529763; 9780769529769
dc.identifierProceedings Of The 7th International Conference On Intelligent Systems Design And Applications, Isda 2007. , v. , n. , p. 837 - 842, 2007.
dc.identifier
dc.identifier10.1109/ISDA.2007.4389712
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-48349116414&partnerID=40&md5=6dc72db65bb06f1c54b3672f6485515b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104201
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104201
dc.identifier2-s2.0-48349116414
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247221
dc.descriptionThis work presents the application of the omni-aiNet algorithm - an immune-inspired algorithm originally developed to solve single and multiobjective optimization problems - to the reconstruction of phylogenetic trees. The main goal of this work is to automatically evolve a population of phylogenetic unrooted trees, possibly with distinct topologies, by minimizing at the same time the minimal evolution and the mean-squared error criteria. The obtained set of phylogenetic trees contains non-dominated individuals that form the Pareto front and that represent the trade-off of the two conflicting objectives. Given this set of phylogenetic trees, two multicriterion decision-making techniques were applied in order to try to select the best solution within the Pareto front. © 2007 IEEE.
dc.description
dc.description
dc.description837
dc.description842
dc.descriptionAtteson, K., The performance of neighbor-joining methods of phylogenetic reconstruction (1999) Algorithmica, 25, pp. 251-278
dc.descriptionBrodai, G.S., Fagerberger, R., Pedersen, C.N.S., Computing the quartet distance between evolutionary trees in time O(n.log(n)) (2004) Algorithmica, 38, pp. 377-395
dc.descriptionBryant, D., A classification of consensus methods for phylogenetics (2003) Dimacs Series in Discrete Mathematics and Theoretical Computer Science, 61. , M. R. Janowitz, F. J. Lapoint, R R. Morris, B. Mirkin, and F. S. Roberts, editors. Bioconsensus, of, American Math. Society
dc.descriptionBuhner, M., Use of the method of generalized least squares in reconstructing phylogenies from sequence data (1991) Molecular Biology and Evolution, 8, pp. 868-883
dc.descriptionG. P. Coelho and F. J. Von Zuben. omni-aiNet: An immune-inspired approach for omni optimization. In Proceedings of the Fifth International Conference on Artificial Immune Systems, pages 294-308, Oeiras, Portugal. September 2006DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L., On computing the nearest neighbor interchange distance (1991) Mathematics Subject Classification
dc.descriptionDasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L., On distances between phylogenetic trees (1997) Proceedings of the 8th Annual ACM - SIAM Symposium on Discrete Algorithms, pp. 427-436
dc.descriptionDeb, K., Multi-objective evolutionary algorithm: Introducing bias among Pareto-optimal solutions (2003) Advances in Evolutionary Computing: Theory and Applications, pp. 263-292. , A. Ghosh and T. Shigeyoshi, editors, Springer-Verlag, London, UK
dc.descriptionJ. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sudcrland. USA, 2004Fitch, W.M., Margoliash, E., Construction of phylogenetic trees (1967) Science, 155, pp. 279-284
dc.descriptionHandl, J., Knowles, J., An evolutionary approach to multiobjective clustering (2007) IEEE Transactions on Evolutionary Computation, 11 (1), pp. 56-76
dc.descriptionKidd, K.K., Sgaramella-Zonta, L.A., Phylogenetic analysis: Concepts and methods (1971) The American Journal of Human Genetics, 23, pp. 235-252
dc.descriptionMiettinen, K., (1999) Nonlinear multiobjective optimization, , Kluwer, Boston, USA
dc.descriptionPoladian, L., Jermiin, L.S., What might evolutionary algorithms (EA) and multi-objective optimisation (MOO) contribute to phylogenetics and the total evidence debate (2004) Proceedings of the Genetic and Evolutionary Computing Coherence (GECCO 2004), , Seattle, USA, June
dc.descriptionPoladian, L., Jermiin, L.S., Multi-objective evolutionary algorithms and phylogenetic inference with multiple data sets (2006) Soft Computing, 4 (10), pp. 359-368
dc.descriptionRobinson, D.F., Foulds, L.R., Comparison of phylogenetic trees (1981) Mathematical Biosciences, 53, pp. 131-147
dc.descriptionSaitou, N., Imanishi, M., Relative efficiencies of the Fitch-Margoliash. maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic reconstructions in obtaining the correct tree (1989) Molecular Biology and Evolution, 6, pp. 514-525
dc.descriptionSaitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Molecular Biology and Evolution, 4 (4), pp. 406-425
dc.descriptionZeleny, M., Compromise programming (1973) Multiple Criteria Decision Making, pp. 262-301. , J. L. Cochrane and M. Zeleny, editors, University of South Carolina Press
dc.languageen
dc.publisher
dc.relationProceedings of The 7th International Conference on Intelligent Systems Design and Applications, ISDA 2007
dc.rightsfechado
dc.sourceScopus
dc.titleA Multiobjective Approach To Phylogenetic Trees: Selecting The Most Promising Solutions From The Pareto Front
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución