dc.creatorSilva Junior D.L.
dc.creatorDe Koning M.
dc.date2012
dc.date2015-06-26T20:30:27Z
dc.date2015-11-26T14:30:41Z
dc.date2015-06-26T20:30:27Z
dc.date2015-11-26T14:30:41Z
dc.date.accessioned2018-03-28T21:34:03Z
dc.date.available2018-03-28T21:34:03Z
dc.identifier
dc.identifierPhysical Review B - Condensed Matter And Materials Physics. , v. 85, n. 2, p. - , 2012.
dc.identifier10980121
dc.identifier10.1103/PhysRevB.85.024119
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84856496743&partnerID=40&md5=4f572fea978f5622fafd8510669c07dc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97345
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97345
dc.identifier2-s2.0-84856496743
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247180
dc.descriptionWe consider the molecular structure and energetics of extended defects in proton-disordered hexagonal ice I h. Using plane-wave density functional theory (DFT) calculations, we compute the energetics of stacking faults and determine the structure of the 30 and 90 partial dislocations on the basal plane. Consistent with experimental data, the formation energies of all fully reconstructed stacking faults are found to be very low. This is consistent with the idea that basal-plane glide dislocations in ice I h are dissociated into partial dislocations separated by an area of stacking fault. For both types of partial dislocation we find a strong tendency toward core reconstruction through pairwise hydrogen-bond reformation. In the case of the 30 dislocation, the pairwise hydrogen-bond formation leads to a period-doubling core structure equivalent to that seen in zinc-blende semiconductor crystals. For the 90 partial we consider two possible core reconstructions, one in which the periodicity of the structure along the core remains unaltered and another in which it is doubled. The latter is preferred, although the energy difference between both is rather small, so that a coexistence of both reconstructions appears plausible. Our results imply that a mobility theory for dislocations on the basal plane in ice I h should be based on the idea of reconstructed partial dislocations. © 2012 American Physical Society.
dc.description85
dc.description2
dc.description
dc.description
dc.descriptionPetrenko, V.F., Whitworth, R.W., (1999) Physics of Ice, , Oxford University Press, New York
dc.descriptionWang, P.K., (2002) Ice Microdynamics, , Academic, San Diego
dc.descriptionClary, D.C., (1996) Science, 271, p. 1509. , SCIEAS 0036-8075 10.1126/science.271.5255.1509
dc.descriptionAbbatt, J.P.D., (2003) Chem. Rev., 103, p. 4783. , CHREAY 0009-2665 10.1021/cr0206418
dc.descriptionHooke, R.L., (2005) Principles of Glacier Mechanics, , Cambridge University Press, Cambridge
dc.descriptionGillet-Chaulet, F., Durand, G., (2010) Nature (London), 467, p. 794. , NATUAS 0028-0836 10.1038/467794a
dc.descriptionSchulson, E., Duval, P., (2009) Creep and Fracture of Ice, , Cambridge University Press, Cambridge
dc.descriptionCuffey, K., Paterson, W., (2010) The Physics of Glaciers, , Butterworth-Heinemann/Elsevier, Burlington, MA
dc.descriptionLouchet, F., (2004) C. R. Phys., 5, p. 687. , CRPOBN 1631-0705 10.1016/j.crhy.2004.09.001
dc.descriptionHull, D., Bacon, D., (2001) Introduction to Dislocations, , Butterworth-Heinemann, Burlington, MA
dc.descriptionWeertman, J., Weertman, J., (1992) Elementary Dislocation Theory, , Oxford University Press, Oxford
dc.descriptionHirth, J.P., Lothe, J., (1982) Theory of Dislocations, , Wiley, New York
dc.descriptionDuesbery, M.S., Richardson, G.Y., (1991) C. R. Solid State Mater. Sci., 17, p. 1. , CCRSDA 1040-8436 10.1080/10408439108244630
dc.descriptionAlexander, H., Haasen, P., (1968) Solid State Physics, p. 28. , in edited by F. Seitz and D. Turnbull (Academic
dc.descriptionBulatov, V.V., Justo, J.F., Cai, W., Yip, S., Argon, A.S., Lenosky, T., De Koning, M., Diaz Dela Rubia, T., (2001) Philos. Mag. A, 81, p. 1257. , PMAADG 0141-8610 10.1080/01418610108214440
dc.descriptionCai, W., Bulatov, V.V., Justo, J.F., Argon, A.S., Yip, S., (2000) Phys. Rev. Lett., 84, p. 3346. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.3346
dc.descriptionGlen, J., (1968) Z. Phys. B, 7, p. 43
dc.descriptionWhitworth, R.W., (1980) Philos. Mag. A, 41, p. 521. , PMAADG 0141-8610 10.1080/01418618008239330
dc.descriptionSazaki, G., Zepeda, S., Nakatsubo, S., Yokoyama, E., Furukawa, Y., (2010) Proc. Natl. Acad. Sci. USA, 107, p. 19702. , PNASA6 0027-8424 10.1073/pnas.1008866107
dc.descriptionMartin, R.M., (2004) Electronic Structure: Basic Theory and Practical Methods, , Cambridge University Press, Cambridge
dc.descriptionKresse, G., Furthmüller, J., (1996) Comput. Mater. Sci., 6, p. 15. , CMMSEM 0927-0256 10.1016/0927-0256(96)00008-0
dc.descriptionPerdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.3865
dc.descriptionKresse, G., Joubert, D., (1999) Phys. Rev. B, 59, p. 1758. , PRBMDO 1098-0121 10.1103/PhysRevB.59.1758
dc.descriptionDe Koning, M., Antonelli, A., Da Silva, A.J.R., Fazzio, A., (2006) Phys. Rev. Lett., 96, p. 075501. , PRLTAO 0031-9007 10.1103/PhysRevLett.96.075501
dc.descriptionDe Koning, M., Antonelli, A., Da Silva, A.J.R., Fazzio, A., (2006) Phys. Rev. Lett., 97, p. 155501. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.155501
dc.descriptionDe Koning, M., Antonelli, A., (2008) J. Chem. Phys., 128, p. 164502. , JCPSA6 0021-9606 10.1063/1.2902280
dc.descriptionFeibelman, P.J., (2008) Phys. Chem. Chem. Phys., 10, p. 4688. , PPCPFQ 1463-9076 10.1039/b808482n
dc.descriptionMilitzer, B., Wilson, H.F., (2010) Phys. Rev. Lett., 105, p. 195701. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.195701
dc.descriptionWatkins, M., Vandevondele, J., Slater, B., (2010) Proc. Natl. Acad. Sci. U.S.A., 107, p. 12429. , PNASA6 0027-8424 10.1073/pnas.1001087107
dc.descriptionWatkins, M., Pan, D., Wang, E.G., Michaelides, A., Vandevondele, J., Slater, B., (2011) Nat. Mater., 10, p. 794. , 1476-1122 10.1038/nmat3096
dc.descriptionHayward, J.A., Reimers, J.R., (1997) J. Chem. Phys., 106, p. 1518. , JCPSA6 0021-9606 10.1063/1.473300
dc.descriptionLi, J., (2003) Modell. Simul. Mater. Sci. Eng., 11, p. 173. , MSMEEU 0965-0393 10.1088/0965-0393/11/2/305
dc.descriptionKantorovich, L.N., (1999) Phys. Rev. B, 60, p. 15476. , PRBMDO 1098-0121 10.1103/PhysRevB.60.15476
dc.descriptionBulatov, V.V., Cai, W., (2006) Computer Simulations of Dislocations, , Oxford University Press, Oxford
dc.descriptionFukuda, A., Hondoh, T., Higashi, A., (1987) J. Phys. Colloques, 48, p. 1
dc.descriptionKuhs, W.F., Bliss, D.V., Finney, J.L., (1987) J. Phys. Colloq., 3, p. 631
dc.descriptionMurray, B.J., Bertram, A.K., (2006) Phys. Chem. Chem. Phys., 8, p. 186. , PPCPFQ 1463-9076 10.1039/b513480c
dc.descriptionRaza, Z., Alfe, D., Salzmann, C.G., Klimes, J., Michaelides, A., Slater, B., (2011) Phys. Chem. Chem. Phys., 13, p. 19788. , PPCPFQ 1463-9076 10.1039/c1cp22506e
dc.descriptionBulatov, V.V., Yip, S., Argon, A.S., (1995) Philos. Mag. A, 72, p. 453. , PMAADG 0141-8610 10.1080/01418619508239934
dc.descriptionBennetto, J., Nunes, R.W., Vanderbilt, D., (1997) Phys. Rev. Lett., 79, p. 245. , PRLTAO 0031-9007 10.1103/PhysRevLett.79.245
dc.descriptionValladares, A., Petford-Long, A.K., Sutton, A.P., (1999) Philos. Mag. Lett., 79, p. 9. , PMLEEG 0950-0839 10.1080/095008399177606
dc.languageen
dc.publisher
dc.relationPhysical Review B - Condensed Matter and Materials Physics
dc.rightsaberto
dc.sourceScopus
dc.titleStructure And Energetics Of Extended Defects In Ice I H
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución