Artículos de revistas
Identification And Characterization Of An Alternatively Spliced Isoform Of The Human Protein Phosphatase 2aα Catalytic Subunit
Registro en:
Journal Of Biological Chemistry. , v. 287, n. 7, p. 4853 - 4862, 2012.
219258
10.1074/jbc.M111.283341
2-s2.0-84856839156
Autor
Migueleti D.L.S.
Smetana J.H.C.
Nunes H.F.
Kobarg J.
Zanchin N.I.T.
Institución
Resumen
PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. 287 7 4853 4862 Janssens, V., Goris, J., Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling (2001) Biochemical Journal, 353 (3), pp. 417-439. , DOI 10.1042/0264-6021:3530417 Zolnierowicz, S., Type 2A protein phosphatase, the complex regulator of numerous signaling pathways (2000) Biochem. Pharmacol., 60, pp. 1225-1235 Goldberg, Y., Protein phosphatase 2A. Who shall regulate the regulator? (1999) Biochem. Pharmacol., 57, pp. 321-328 Virshup, D.M., Shenolikar, S., From promiscuity to precision. Protein phosphatases get a makeover (2009) Mol. Cell, 33, pp. 537-545 Eichhorn, P.J., Creyghton, M.P., Bernards, R., Protein phosphatase 2A regulatory subunits and cancer (2009) Biochim. Biophys. Acta, 1795, pp. 1-15 Junttila, M.R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., Ala-aho, R., Westermarck, J., CIP2A Inhibits PP2A in Human Malignancies (2007) Cell, 130 (1), pp. 51-62. , DOI 10.1016/j.cell.2007.04.044, PII S0092867407006666 Mumby, M., PP2A. Unveiling a reluctant tumor suppressor (2007) Cell, 130, pp. 21-24 Van Hoof, C., Goris, J., PP2A fulfills its promises as tumor suppressor: Which subunits are important? (2004) Cancer Cell, 5 (2), pp. 105-106. , DOI 10.1016/S1535-6108(04)00027-3, PII S1535610804000273 Xing, Y., Li, Z., Chen, Y., Stock, J.B., Jeffrey, P.D., Shi, Y., Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A (2008) Cell, 133 (1), pp. 154-163. , DOI 10.1016/j.cell.2008.02.041, PII S0092867408003309 Stanevich, V., Jiang, L., Satyshur, K.A., Li, Y., Jeffrey, P.D., Li, Z., Menden, P., Xing, Y., The structural basis for tight control of PP2A methylation and function by LCMT-1 (2011) Mol. Cell, 41, pp. 331-342 Chen, J., Peterson, R.T., Schreiber, S.L., α4 associates with protein phosphatases 2A, 4, and 6 (1998) Biochem. Biophys. Res. Commun., 247, pp. 827-832 Smetana, J.H.C., Zanchin, N.I.T., Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, α4 and the mammalian ortholog of yeast Tip41 (TIPRL) (2007) FEBS Journal, 274 (22), pp. 5891-5904. , DOI 10.1111/j.1742-4658.2007.06112.x Kong, M., Fox, C.J., Mu, J., Solt, L., Xu, A., Cinalli, R.M., Birnbaum, M.J., Thompson, C.B., The PP2A-associated protein α4 is an essential inhibitor of apoptosis (2004) Science, 306 (5696), pp. 695-698. , DOI 10.1126/science.1100537 Kong, M., Ditsworth, D., Lindsten, T., Thompson, C.B., α4 is an essential regulator of PP2A phosphatase activity (2009) Mol. Cell, 36, pp. 51-60 McConnell, J.L., Watkins, G.R., Soss, S.E., Franz, H.S., McCorvey, L.R., Spiller, B.W., Chazin, W.J., Wadzinski, B.E., α4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination (2010) Biochemistry, 49, pp. 1713-1718 McConnell, J.L., Gomez, R.J., McCorvey, L.R.A., Law, B.K., Wadzinski, B.E., Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway (2007) Oncogene, 26 (41), pp. 6021-6030. , DOI 10.1038/sj.onc.1210406, PII 1210406 McDonald, W.J., Sangster, S.M., Moffat, L.D., Henderson, M.J., Too, C.K., α4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein (2010) J. Cell Biochem., 110, pp. 1123-1129 LeNoue-Newton, M., Watkins, G.R., Zou, P., Germane, K.L., McCorvey, L.R., Wadzinski, B.E., Spiller, B.W., The E3 ubiquitin ligaseand protein phosphatase 2A (PP2A)-binding domains of the α4 protein are both required for α4 to inhibit PP2A degradation (2011) J. Biol. Chem., 286, pp. 17665-17671 Assmann, E.M., Alborghetti, M.R., Camargo, M.E.R., Kobarg, J., FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region (2006) Journal of Biological Chemistry, 281 (15), pp. 9869-9881. , http://www.jbc.org/cgi/reprint/281/15/9869.pdf, DOI 10.1074/jbc.M513280200 Smetana, J.H., Oliveira, C.L., Jablonka, W., Aguiar Pertinhez, T., Carneiro, F.R., Montero-Lomeli, M., Torriani, I., Zanchin, N.I., Low resolution structure of the human α4 protein (IgBP1) and studies on the stability of α4 and of its yeast ortholog Tap42 (2006) Biochim. Biophys. Acta, 1764, pp. 724-734 Ausubel, F., Brent, R., Kingston, R., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., (1998) Current Protocols in Molecular Biology, , John Wiley and Sons, New York Xu, Y., Chen, Y., Zhang, P., Jeffrey, P.D., Shi, Y., Structure of a protein phosphatase 2A holoenzyme. Insights into B55-mediated Tau dephosphorylation (2008) Mol. Cell, 31, pp. 873-885 Kozakov, D., Hall, D.R., Beglov, D., Brenke, R., Comeau, S.R., Shen, Y., Li, K., Vajda, S., Achieving reliability and high accuracy in automated protein docking. ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19 (2010) Proteins, 78, pp. 3124-3130 Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S., PIPER: An FFT-based protein docking program with pairwise potentials (2006) Proteins: Structure, Function and Genetics, 65 (2), pp. 392-406. , DOI 10.1002/prot.21117 Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., ClusPro: An automated docking and discrimination method for the prediction of protein complexes (2004) Bioinformatics, 20 (1), pp. 45-50. , DOI 10.1093/bioinformatics/btg371 Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., ClusPro: A fully automated algorithm for protein-protein docking (2004) Nucleic Acids Research, 32 (WEB SERVER ISS.), pp. W96-W99. , DOI 10.1093/nar/gkh354 DeLano, W.L., (2002) The PyMOL Molecular Graphics System, , DeLano Scientific, San Carlos, CA Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., Yu, J.W., Shi, Y., Structure of the Protein Phosphatase 2A Holoenzyme (2006) Cell, 127 (6), pp. 1239-1251. , DOI 10.1016/j.cell.2006.11.033, PII S0092867406015376 Cho, U.S., Xu, W., Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme (2007) Nature, 445 (7123), pp. 53-57. , DOI 10.1038/nature05351, PII NATURE05351 Prickett, T.D., Brautigan, D.L., Overlapping binding sites in protein phosphatase 2A for association with regulatory A and α-4 (mTap42) subunits (2004) Journal of Biological Chemistry, 279 (37), pp. 38912-38920. , DOI 10.1074/jbc.M401444200 Kloeker, S., Reed, R., McConnell, J.L., Chang, D., Tran, K., Westphal, R.S., Law, B.K., Wadzinski, B.E., Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family (PP2A C, PP4 C, and PP6 C) and analysis of the interaction of PP2A C with alpha4 protein (2003) Protein Expression and Purification, 31 (1), pp. 19-33. , DOI 10.1016/S1046-5928(03)00141-4 Kickstein, E., Krauss, S., Thornhill, P., Rutschow, D., Zeller, R., Sharkey, J., Williamson, R., Schweiger, S., Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 21830-21835 Lizotte, D.L., Blakeslee, J.J., Siryaporn, A., Heath, J.T., DeLong, A., A PP2A active site mutant impedes growth and causes misregulation of native catalytic subunit expression (2008) Journal of Cellular Biochemistry, 103 (4), pp. 1309-1325. , DOI 10.1002/jcb.21514