dc.creatorMartinez J.
dc.creatorMartinez J.M.
dc.date2008
dc.date2015-06-30T19:25:01Z
dc.date2015-11-26T14:30:04Z
dc.date2015-06-30T19:25:01Z
dc.date2015-11-26T14:30:04Z
dc.date.accessioned2018-03-28T21:33:21Z
dc.date.available2018-03-28T21:33:21Z
dc.identifier
dc.identifierComputers And Chemical Engineering. , v. 32, n. 8, p. 1735 - 1745, 2008.
dc.identifier981354
dc.identifier10.1016/j.compchemeng.2007.08.016
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-44349193867&partnerID=40&md5=d071f668e454d797d081dfe1ab99659c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106134
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106134
dc.identifier2-s2.0-44349193867
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1247008
dc.descriptionThe estimation of parameters of the Sovová's model for supercritical fluid extraction is addressed in the present work. A global optimization approach is employed. Reasons for this decision are given as a consequence of more general modeling objectives. The way of dealing with different objective functions and constraints is described. Real-life experiments are given. © 2007 Elsevier Ltd. All rights reserved.
dc.description32
dc.description8
dc.description1735
dc.description1745
dc.descriptionAdjiman, C.S., Androulakis, I.P., Floudas, C.A., A global optimization method, αBB, for general twice-differentiable constrained NLPs. II. Implementation and computational results (1998) Computers & Chemical Engineering, 22, pp. 1159-1179
dc.descriptionAdjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A., A global optimization method, αBB, for general twice-differentiable constrained NLPs. I. Theoretical advances (1998) Computers and Chemical Engineering, 22, pp. 1137-1158
dc.descriptionBates, D.M., Watts, D.G., (1988) Nonlinear regression analysis and its applications, , Wiley, New York
dc.descriptionBerna, A., Tárrega, A., Blasco, M., Subirats, S., Supercritical CO2 extraction of essential oil from orange peel
dc.descriptioneffect of the height of the bed (2000) Journal of Supercritical Fluids, 18, pp. 227-237
dc.descriptionBirgin, E. J., Floudas, C. A., & Martínez, J. M. (2006). Global minimization using an augmented Lagrangian method with variable lower-level constraints. Available in Optimization Online, E-Print ID:2006-12-1544, http://www.optimization-online.org/DB_HTML/2006/12/1544.htmlBox, M.J., A new method for constrained optimization and comparison with other methods (1965) Computer Journal, 8, pp. 42-52
dc.descriptionBrunner, G., (1994) Gas extraction: An introduction to fundamentals of supercritical fluids and applications to separation processes, , Springer, New York
dc.descriptionCampos, L.M.A.S., Michielin, E.M.Z., Danielsky, L., Ferreira, S.R.S., Experimental data and modeling the supercritical fluid extraction of marigold (Calendula officinalis) oleoresin (2005) Journal of Supercritical Fluids, 34, pp. 163-170
dc.descriptionDel-Valle, J. M., Jiménez, M., &amp
dc.descriptionDe-la-Fuente, J. C. (2003). Extraction kinetics of pre-pelletized jalapeño peppers with supercritical CO2. Journal of Supercritical Fluids, 25 (1), 33-44Esquível, M.M., Bernardo-Gil, M.G., King, M.B., Mathematical model for supercritical extraction of olive husk oil (1999) Journal of Supercritical Fluids, 16 (1), pp. 43-58
dc.descriptionFletcher, R., (1987) Practical methods of optimization, , Academic Press, London, UK
dc.descriptionFloudas, C.A., (1999) Deterministic global optimization: Theory, methods and application, , Kluwer Academic Publishers
dc.descriptionGallant, A.R., Nonlinear regression (1975) The American Statistician, 29, pp. 73-81
dc.descriptionGordillo, M.D., Blanco, M.A., Molero, A., Martínez-de-la-Ossa, E., Solubility of the antibiotic Penicillin G in supercritical carbon dioxide (1999) Journal of Supercritical Fluids, 15 (3), pp. 183-190
dc.descriptionGoto, M., Sato, M., Hirose, T., Extraction of peppermint oil by supercritical carbon dioxide (1993) Journal of Chemical Engineering of Japan, 26 (4), pp. 401-407
dc.descriptionHuber, P., (1981) Robust statistics, , Wiley, New York
dc.descriptionKiriamiti, H.K., Rascol, E., Marty, A., Condoret, J.S., Extraction rates of oil from high oleic sunflower seeds with supercritical carbon dioxide (2002) Chemical Engineering and Processing, 41 (8), pp. 711-718
dc.descriptionMartínez, J. (2005). Extração de Óleos Voláteis e Outros Compostos com CO2 Supercrítico: Desenvolvimento de uma Metodologia de Aumento de Escala a partir da Modelagem Matemática do Processo e Avaliação dos Extratos Obtidos. Doctoral Thesis. Food Engineering Department, State University of Campinas, BrazilMartínez, J., Monteiro, A.R., Rosa, P.T.V., Marques, M.O.M., Meireles, M.A.A., Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide (2003) Industrial and Engineering Chemistry Research, 42 (5), pp. 1057-1063
dc.descriptionMathews, M., Seymour, S., (1997) Excel for Windows: The complete reference. 2nd ed., , Mc Graw Hill Inc
dc.descriptionMéndez-Santiago, J., Teja, A.S., Solubility of solids in supercritical fluids: Consistency of data and a new model for cosolvent systems (2000) Industrial and Engineering Chemistry Research, 39, pp. 4767-4771
dc.descriptionMoura, L.S., Carvalho, R.N., Stefanini, M.B., Ming, L.C., Meireles, M.A.A., Supercritical fluid extraction from fennel (Foeniculum vulgare): Global yield, composition and kinetic data (2005) Journal of Supercritical Fluids, 35 (3), pp. 212-219
dc.descriptionNelder, J.A., Mead, R., A simplex-method for function minimization (1965) Computer Journal, 7 (4), pp. 308-313
dc.descriptionPerakis, C., Louli, V., Magoulas, K., Supercritical fluid extraction of black pepper oil (2005) Journal of Food Engineering, 71, pp. 386-393
dc.descriptionPovh, N.P., Marques, M.O.M., Meireles, M.A.A., Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert) (2001) Journal of Supercritical Fluids, 21, pp. 245-256
dc.descriptionReverchon, E., Marrone, C., Supercritical extraction of clove bud essential oil: Isolation and mathematical modelling (1997) Chemical Engineering Science, 52 (20), pp. 3421-3428
dc.descriptionReverchon, E., Marrone, C., Modeling and simulation of the supercritical CO2 extraction of vegetable oils (2001) Journal of Supercritical Fluids, 19, pp. 161-175
dc.descriptionSousa, E.M.B.D., Martínez, J., Chiavone-Filho, O., Rosa, P.T.V., Domingos, T., Meireles, M.A.A., Extraction of volatile oil from Croton zehntneri Pax et Hoff with pressurized CO2: Solubility, composition and kinetics (2005) Journal of Food Engineering, 69, pp. 325-333
dc.descriptionSovová, H., Rate of the vegetable oil extraction with supercritical CO2. I. Modeling of extraction curves (1994) Chemical Engineering Science, 49 (3), pp. 409-414
dc.descriptionSu, C., Chen, Y., Correlation for the solubilities of pharmaceutical compounds in supercritical carbon dioxide (2007) Fluid Phase Equilibria, 254, pp. 167-173
dc.descriptionZhou, W., Anitescu, G., Tavlarides, L.L., Desorption of polychlorinated biphenyls from contaminated St. Lawrence river sediments with supercritical fluids (2004) Industrial and Engineering Chemistry Research, 43, pp. 397-404
dc.descriptionZizovic, I., Stamenic, M., Orlovic, A., Skala, D., Supercritical carbon dioxide essential oil extraction of Lamiaceae family species: Mathematical modeling on the micro-scale and process optimisation (2005) Chemical Engineering Science, 60, pp. 6747-6756
dc.languageen
dc.publisher
dc.relationComputers and Chemical Engineering
dc.rightsfechado
dc.sourceScopus
dc.titleFitting The Sovová's Supercritical Fluid Extraction Model By Means Of A Global Optimization Tool
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución