dc.creatorGalbusera L.
dc.creatorBolzern P.
dc.creatorDeaecto G.S.
dc.creatorGeromel J.C.
dc.date2012
dc.date2015-06-26T20:30:21Z
dc.date2015-11-26T14:29:58Z
dc.date2015-06-26T20:30:21Z
dc.date2015-11-26T14:29:58Z
dc.date.accessioned2018-03-28T21:33:14Z
dc.date.available2018-03-28T21:33:14Z
dc.identifier
dc.identifierInternational Journal Of Robust And Nonlinear Control. , v. 22, n. 15, p. 1674 - 1690, 2012.
dc.identifier10498923
dc.identifier10.1002/rnc.1777
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866390287&partnerID=40&md5=5a9d9309e54ddcea4d9cb600c893ccf6
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97304
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97304
dc.identifier2-s2.0-84866390287
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246977
dc.descriptionIn this paper, we propose contributions on the stabilization and Hâ control of switched linear systems subject to time-delays through the assignment of the switching law. As a first step, based on previous results related to switched linear systems with no time-delays and exploiting the concept of piecewise quadratic Lyapunov-Krasovskii functionals, we solve the problem of finding suitable state-dependent switching laws ensuring the prescribed control objectives. Secondly, we extend such results and present a strategy to construct an output feedback switching law, based on the available measurements made on the system. In both cases, the design of the control strategy is done by computing a feasible solution to a set of matrix inequalities associated to the modes of the switched linear system. Copyright © 2011 John Wiley & Sons, Ltd.
dc.description22
dc.description15
dc.description1674
dc.description1690
dc.descriptionHu, H.Y., Wang, Z.H., (2002) Dynamics of Controlled Mechanical Systems with Delayed Feedback, , Springer-Verlag, New York
dc.descriptionTipsuwan, Y., Chow, M.-Y., Control methodologies in networked control systems (2003) Control Engineering Practice, 11 (10), pp. 1099-1111. , DOI 10.1016/S0967-0661(03)00036-4
dc.descriptionKuang, Y., (1993) Delayed Differential Equations with Applications in Population Dynamics, , Academic Press: Boston
dc.descriptionJiang, W., Fridman, E., Kruszewski, A., Richard, J.-P., Switching controller for stabilization of linear systems with switched time-varying delays (2009) Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference, pp. 7923-7928. , 15-18 December
dc.descriptionXie, D., Wang, Q., Wu, Y., Average dwell-time approach to l 2 gain control synthesis of switched linear systems with time delay in detection of switching signal (2009) Control Theory Applications, IET, 3 (6), pp. 763-771
dc.descriptionRichard, J., Time-delay systems: An overview of some recent advances and open problems (2003) Automatica, 39 (10), pp. 1667-1694
dc.descriptionDe Oliveira, M.C., Geromel, J.C., Synthesis of nonrational controllers for linear delay systems (2004) Automatica, 40 (2), pp. 171-188
dc.descriptionZhai, G., Sun, Y., Chen, X., Michel, A.N., Stability and L 2 gain analysis for switched symmetric systems with time delay (2003) Proceedings of the 2003 American Control Conference, pp. 2682-2687. , 4-6 June
dc.descriptionXie, G., Wang, L., Stability and stabilization of switched linear systems with state delay: Continuous-time case (2004) 16th International Symposium on Mathematical Theory of Networks and Systems
dc.descriptionHe, Y., Wu, M., She, J.-H., Liu, G.-P., Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties (2004) IEEE Transactions on Automatic Control, 49 (5), pp. 828-832
dc.descriptionSun, X.-M., Zhao, J., Hill, D.J., Stability and L 2-gain analysis for switched delay systems: A delay-dependent method (2006) Automatica, 42 (10), pp. 1769-1774. , DOI 10.1016/j.automatica.2006.05.007, PII S0005109806002135
dc.descriptionSun, Y.G., Wang, L., Xie, G., Stability of switched systems with time-varying delays: Delay-dependent common Lyapunov functional approach (2006) Proceedings of the American Control Conference, 2006, pp. 1544-1549. , 1656438, Proceedings of the 2006 American Control Conference
dc.descriptionKim, S., Campbell, S.A., Liu, X., Stability of a class of linear switching systems with time delay (2006) IEEE Transactions on Circuits and Systems I: Regular Papers, 53 (2), pp. 384-393. , DOI 10.1109/TCSI.2005.856666
dc.descriptionKim, S., Campbell, S.A., Liu, X., Delay independent stability of linear switching systems with time delay (2008) Journal of Mathematical Analysis and Applications, 339 (2), pp. 785-801
dc.descriptionWang, D., Wang, W., Shi, P., Delay-dependent exponential stability for switched delay systems (2009) Optimal Control Applications and Methods, 30 (4), pp. 383-397
dc.descriptionSun, X.-M., Wang, W., Liu, G.-P., Zhao, J., Stability analysis for linear switched systems with time-varying delay (2008) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2), pp. 528-533. , DOI 10.1109/TSMCB.2007.912078
dc.descriptionYan, P., Ozbay, H., On switching H ∞ controllers for a class of linear parameter varying systems (2007) Systems and Control Letters, 56 (7-8), pp. 504-511. , DOI 10.1016/j.sysconle.2007.02.002, PII S0167691107000229
dc.descriptionLian, J., Dimirovski, G.M., Zhao, J., Robust H∞control of uncertain switched delay systems using multiple Lyapunov functions Proceedings of the 2008 American Control Conference, pp. 1582-1587. , Seattle, WA, 11
dc.descriptionGalbusera, L., Bolzern, P., H∞control of time-delay switched linear systems by state-dependent switching (2010) Proceedings of the 9th IFAC Workshop on Time Delay Systems, , Prague, Czech Republic
dc.descriptionGeromel, J.C., Colaneri, P., Stability and stabilization of continuous-time switched linear systems (2006) SIAM Journal on Control and Optimization, 45 (5), pp. 1915-1930. , DOI 10.1137/050646366
dc.descriptionGeromel, J.C., Deaecto, G.S., Switched state feedback control for continuous-time uncertain systems (2009) Automatica, 45 (2), pp. 593-597
dc.descriptionDeaecto, G.S., Geromel, J.C., Daafouz, J., Dynamic output feedback H∞control of switched linear systems (2011) Automatica, , in press. DOI: 10.1016/j.automatica.2011.02.046
dc.descriptionGeromel, J.C., Colaneri, P., Bolzern, P., Dynamic output feedback control of switched linear systems (2008) IEEE Transactions on Automatic Control, 53 (3), pp. 720-733. , DOI 10.1109/TAC.2008.919860
dc.descriptionKolmanovski, V.B., Myshkis, A., (1999) Introduction to the Theory and Applications of Functional Differential Equations, 463. , Mathematics and Its Applications, Kluwer Academic Publishers: Dordrecht, The Netherlands
dc.descriptionLiberzon, D., (2003) Switching in Systems and Control, , Systems and Control: Foundations and Applications, Birkhäuser: Boston
dc.descriptionGalbusera, L., (2009) Optimal and Robust Control of Switched Linear Systems with Delays, , Ph.D. Thesis, Politecnico di Milano, Milano, Italy
dc.descriptionLasdon, L.S., (1970) Optimization Theory for Large Scale Systems, , MacMillan: New York
dc.descriptionFilippov, A.F., (1988) Differential Equations with Discontinuous Righthand Sides, , Springer: Dordrecht, Netherlands
dc.languageen
dc.publisher
dc.relationInternational Journal of Robust and Nonlinear Control
dc.rightsfechado
dc.sourceScopus
dc.titleState And Output Feedback H ∞ Control Of Time-delay Switched Linear Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución