dc.creatorSantos C.A.
dc.creatorBeloti L.L.
dc.creatorToledo M.A.S.
dc.creatorCrucello A.
dc.creatorFavaro M.T.P.
dc.creatorMendes J.S.
dc.creatorSantiago A.S.
dc.creatorAzzoni A.R.
dc.creatorSouza A.P.
dc.date2012
dc.date2015-06-26T20:30:20Z
dc.date2015-11-26T14:29:55Z
dc.date2015-06-26T20:30:20Z
dc.date2015-11-26T14:29:55Z
dc.date.accessioned2018-03-28T21:33:12Z
dc.date.available2018-03-28T21:33:12Z
dc.identifier
dc.identifierProtein Expression And Purification. , v. 82, n. 2, p. 284 - 289, 2012.
dc.identifier10465928
dc.identifier10.1016/j.pep.2012.01.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84857127405&partnerID=40&md5=19405b19637990b0110948d208559c63
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97303
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97303
dc.identifier2-s2.0-84857127405
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246968
dc.descriptionXylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. © 2012 Elsevier Inc. All rights reserved.
dc.description82
dc.description2
dc.description284
dc.description289
dc.descriptionGodlewska, R., Wiśniewska, K., Pietras, Z., Jagusztyn-Krynicka, E.K., Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: Function, structure, role in pathogenesis and potential application in immunoprophylaxis (2009) FEMS Microbiol. Lett., 298, pp. 1-11
dc.descriptionParsons, L.M., Lin, F., Orban, J., Peptidoglycan recognition by Pal, an outer membrane lipoprotein (2006) Biochemistry, 45, pp. 2122-2128
dc.descriptionLazzaroni, J.C., Portalier, R., The excC gene of Escherichia coli K-12 required for cell envelope integrity encodes the peptidoglycan-associated lipoprotein (PAL) (1992) Mol. Microbiol., 6, pp. 735-742
dc.descriptionCascales, E., Bernadac, A., Gavioli, M., Lazzaroni, J.C., Lloubes, R., Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity (2002) J. Bacteriol., 184, pp. 754-759
dc.descriptionHellman, J., Roberts, Jr.J.D., Tehan, M.M., Allaire, J.E., Warren, H.S., Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice (2002) J. Biol. Chem., 277, pp. 14274-14280
dc.descriptionLiang, M.D., Bagchi, A., Warren, H.S., Tehan, M.M., Trigilio, J.A., Beasley-Topliffe, L.K., Tesini, B.L., Hellman, J., Bacterial peptidoglycan-associated lipoprotein: A naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide (2005) J. Infect. Dis., 191, pp. 939-948
dc.descriptionIhalin, R., Karched, M., Eneslatt, K., Asikainen, S., Characterization of immunoaffinity purified peptidoglycan-associated lipoprotein of Actinobacillus actinomycetemcomitans (2006) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 831, pp. 116-125
dc.descriptionFortney, K.R., Young, R.S., Bauer, M.E., Katz, B.P., Hood, A.F., Munson, Jr.R.S., Spinola, S.M., Expression of peptidoglycan-associated lipoprotein is required for virulence in the human model of Haemophilus ducreyi infection (2000) Infect. Immun., 68, pp. 6441-6448
dc.descriptionDubuisson, J.F., Vianney, A., Hugouvieux-Cotte-Pattat, N., Lazzaroni, J.C., Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence (2005) Microbiology, 151, pp. 3337-3347
dc.descriptionHeilpern, A.J., Waldor, M.K., CTXphi infection of Vibrio cholerae requires the tolQRA gene products (2000) J. Bacteriol., 182, pp. 1739-1747
dc.descriptionYeh, Y.C., Comolli, L.R., Downing, K.H., Shapiro, L., McAdams, H.H., The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor (2010) J. Bacteriol., 192, pp. 4847-4858
dc.descriptionMcMahon, M., Murphy, T.F., Kyd, J., Thanavala, Y., Role of an immunodominant T cell epitope of the P6 protein of nontypeable Haemophilus influenzae in murine protective immunity (2005) Vaccine, 23, pp. 3590-3596
dc.descriptionMurphy, T.F., Kirkham, C., Lesse, A.J., Construction of a mutant and characterization of the role of the vaccine antigen P6 in outer membrane integrity of nontypeable Haemophilus influenzae (2006) Infect. Immun., 74, pp. 5169-5176
dc.descriptionRay, M.C., Germon, P., Vianney, A., Portalier, R., Lazzaroni, J.C., Identification by genetic suppression of Escherichia coli TolB residues important for TolB-Pal interaction (2000) J. Bacteriol., 182, pp. 821-824
dc.descriptionCascales, E., Lloubes, R., Deletion analyses of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box (2004) Mol. Microbiol., 51, pp. 873-885
dc.descriptionClavel, T., Germon, P., Vianney, A., Portalier, R., Lazzaroni, J.C., TolB protein of Escherichia coli K-12 interacts with the outer membrane peptidoglycan-associated proteins Pal, Lpp and OmpA (1998) Mol. Microbiol., 29, pp. 359-367
dc.descriptionZlotnick, G.W., Sanfilippo, V.T., Mattler, J.A., Kirkley, D.H., Boykins, R.A., Seid, Jr.R.C., Purification and characterization of a peptidoglycan-associated lipoprotein from Haemophilus influenzae (1988) J. Biol. Chem., 263, pp. 9790-9794
dc.descriptionBouveret, E., Bénédetti, H., Rigal, A., Loret, E., Lazdunski, C., In vitro characterization of peptidoglycan-associated lipoprotein (PAL)-peptidoglycan and PAL-TolB interactions (1999) J. Bacteriol., 181, pp. 6306-6311
dc.descriptionChang, C.J., Garnier, M., Zreik, L., Rossetti, V., Bové, J.M., Culture and serological detection of xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa (1993) Curr. Microbiol., 27, pp. 137-142
dc.descriptionChatterjee, S., Almeida, R.P., Lindow, S., Living in two worlds: The plant and insect lifestyles of Xylella fastidiosa (2008) Annu. Rev. Phytopathol., 46, pp. 243-271
dc.descriptionBaba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Mori, H., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection (2006) Mol. Syst. Biol., 2, pp. 2006-0008
dc.descriptionNicholas, H.B., Nicholas, Jr.K.B., Deerfield, D.W., Genedoc: Analysis and visualization of genetic variation (1997) EMBnet.news, 4, pp. 1-4
dc.descriptionWhitmore, L., Wallace, B.A., DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data (2004) Nucleic Acids Res., 32, pp. 668-W673
dc.descriptionLeduc, M., Joseleau-Petit, D., Rothfield, L.I., Interactions of membrane lipoproteins with the murein sacculus of Escherichia coli as shown by chemical cross-linking studies of intact cells (1989) FEMS Microbiol. Lett., 51, pp. 11-14
dc.descriptionLoftus, S.R., Walker, D., Maté, M.J., Bonsor, D.A., James, R., Moore, G.R., Kleanthous, C., Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9 (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 12353-12358
dc.descriptionBonsor, D.A., Grishkovskaya, I., Dodson, E.J., Kleanthous, C., Molecular mimicry enables competitive recruitment by a natively disordered protein (2007) J. Am. Chem. Soc., 129, pp. 4800-4807
dc.descriptionMizuno, T., A novel peptidoglycan-associated lipoprotein found in the cell envelope of Pseudomonas aeruginosa and Escherichia coli (1979) J. Biochem., 86, pp. 991-1000
dc.descriptionMonera, O.D., Kay, C.M., Hodges, R.S., Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions (1994) Protein Sci., 3, pp. 1984-1991
dc.descriptionMizuno, T., A novel peptidoglycan-associated lipoprotein (PAL) found in the outer membrane of Proteus mirabilis and other Gram-negative bacteria (1981) J. Biochem., 89, pp. 1039-1049
dc.descriptionMcGuffin, L.J., Bryson, K., Jones, D.T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
dc.descriptionLilie, H., Schwarz, E., Rudolph, R., Advances in refolding of proteins produced in E. coli (1998) Curr. Opin. Biotechnol., 9, pp. 497-501
dc.languageen
dc.publisher
dc.relationProtein Expression and Purification
dc.rightsfechado
dc.sourceScopus
dc.titleA Novel Protein Refolding Protocol For The Solubilization And Purification Of Recombinant Peptidoglycan-associated Lipoprotein From Xylella Fastidiosa Overexpressed In Escherichia Coli
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución