dc.creatorFostier A.H.
dc.creatorPereira M.d.S.S.
dc.creatorRath S.
dc.creatorGuimaraes J.R.
dc.date2008
dc.date2015-06-30T19:24:42Z
dc.date2015-11-26T14:29:48Z
dc.date2015-06-30T19:24:42Z
dc.date2015-11-26T14:29:48Z
dc.date.accessioned2018-03-28T21:33:05Z
dc.date.available2018-03-28T21:33:05Z
dc.identifier
dc.identifierChemosphere. , v. 72, n. 2, p. 319 - 324, 2008.
dc.identifier456535
dc.identifier10.1016/j.chemosphere.2008.01.067
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-43049170477&partnerID=40&md5=dca1f950485a0f6199436c1bb60f2f90
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/106106
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/106106
dc.identifier2-s2.0-43049170477
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246945
dc.descriptionArsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l-1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l-1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l-1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters. © 2008 Elsevier Ltd. All rights reserved.
dc.description72
dc.description2
dc.description319
dc.description324
dc.descriptionBissen, M., Vieillard-Baron, M.M., Schindelin, A.J., Frimmel, F.H., TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples (2001) Chemosphere, 44, pp. 751-757
dc.descriptionBorba, R.P., Figueiredo, B.R., Matschullat, J., Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from iron quadrangle, Brazil (2003) Environ. Geol., 44, pp. 39-52
dc.descriptionCONAMA (Conselho Nacional do Meio Ambiente), 2005. Resolution n° 357 of 17/03/2005, D.O.U. of 31/03/05, Brasília, p. 72Cullen, W.R., Reimer, K.J., Arsenic speciation in the environment (1989) Chem. Rev., 89, pp. 713-764
dc.descriptionDutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals (2005) Environ. Sci. Technol., 39, pp. 1827-1834
dc.descriptionFergusson, M.A., Hering, J.G., TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor (2006) Environ. Sci. Technol., 40, pp. 4261-4267
dc.descriptionGarcia, M.G., d'Hiriart, J., Giullitti, J., Lin, H., Custo, G., Hidalgo, M.d.V., Litter, M.I., Blesa, M.A., Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables (2004) Sol. Energy, 77, pp. 601-613
dc.descriptionGoldberg, S., Johnston, C.T., Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling (2001) J. Colloid Interf. Sci., 234, pp. 204-216
dc.descriptionHugh, S., Canonica, L., Wegelin, M., Gechter, D., Von Guten, U., Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters (2001) Environ. Sci. Technol., 35, pp. 2114-2121
dc.descriptionImpellitteri, C.A., Scheckel, K.G., The distribution, solid-phase speciation, and desorption/dissolution of As in waste iron-based drinking water treatment residuals (2006) Chemosphere, 64, pp. 875-880
dc.descriptionJain, A., Raven, K.P., Loeppert, R.H., Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry (1999) Environ. Sci. Technol., 33, pp. 1179-1184
dc.descriptionJayaweera, P.M., Godakumbra, P.I., Pathiartne, K.A.S., Photocatalytic oxidation of As(III) to As(V) in aqueous solutions: a low cost pre-oxidative treatment for total removal of arsenic from water (2003) Curr. Sci. India, 84, pp. 541-543
dc.descriptionKatsoyiannis, I.A., Hugh, S.J., Ammann, A., Zikoudi, A., Hatziliontos, C., Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment (2007) Sci. Total Environ., 383, pp. 128-140
dc.descriptionKim, M.J., Nriagu, J.O., Oxidation of arsenic in drinking water by ozone and oxygen (2000) Sci. Total Environ., 247, pp. 71-78
dc.descriptionLee, H., Choi, W., Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms (2002) Environ. Sci. Technol., 36, pp. 3872-3878
dc.descriptionMeichtry, J.M., Lin, H.J., de la Fuente, L., Levy, I.K., Gautier, E.A., Blesa, M.A., Litter, M., Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions. Photocatalyst fixation (2007) J. Sol. Energ-T ASME, 129, pp. 119-126
dc.descriptionNogueira, R.F.P., Jardim, W.F., Heterogeneous photocatalysis and its environmental applications (1998) Quim. Nova, 21, pp. 69-72
dc.descriptionNordstrom, D.K., Worldwide occurrences of arsenic in groundwater (2002) Science, 296, pp. 2143-2145
dc.descriptionOscarson, D.W., Huang, P.M., Defosse, C., Herbillon, A., Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments (1981) Nature, 291, pp. 50-51
dc.descriptionPereira, M.S.S., Winter, E., Guimarães, J.R., Rath, S., Fostier, A.H., A simple voltammetric procedure for speciation and evaluation of As removal from water (2007) Environ. Chem. Lett., 5, pp. 137-141
dc.descriptionPettine, M., Millero, F.J., Effect of metals on the oxidation of As(III) with H2O2 (2000) J. Mar. Chem., 70, pp. 223-234
dc.descriptionRyu, J., Choi, W., Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides (2004) Environ. Sci. Technol., 38, pp. 2928-2933
dc.descriptionSiegel, M., McConnell, P., Ilges, A., Chen, H.-W., Ghassemi, A. Thompson, R. 2006. Development and evaluation of innovative arsenic adsorption technologies for drinking water by the arsenic water technology partnership. In: Proceedings of the 2006 National Groundwater Association Meeting on Naturally Occurring Contaminants Conference, Albuquerque, NM February, pp. 6-7Wegelin, M., Back to the household - also in water treatment (2000) EAWAG News, 48, pp. 11-12
dc.descriptionZhang, F.S., Itoh, H., Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent (2006) Chemosphere, 65, pp. 125-131
dc.languageen
dc.publisher
dc.relationChemosphere
dc.rightsfechado
dc.sourceScopus
dc.titleArsenic Removal From Water Employing Heterogeneous Photocatalysis With Tio2 Immobilized In Pet Bottles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución