dc.creatorAno Bom A.P.D.
dc.creatorRangel L.P.
dc.creatorCosta D.C.F.
dc.creatorDe Oliveira G.A.P.
dc.creatorSanches D.
dc.creatorBraga C.A.
dc.creatorGava L.M.
dc.creatorRamos C.H.I.
dc.creatorCepeda A.O.T.
dc.creatorStumbo A.C.
dc.creatorDe Moura Gallo C.V.
dc.creatorCordeiros Y.
dc.creatorSilva J.L.
dc.date2012
dc.date2015-06-26T20:30:19Z
dc.date2015-11-26T14:29:46Z
dc.date2015-06-26T20:30:19Z
dc.date2015-11-26T14:29:46Z
dc.date.accessioned2018-03-28T21:33:03Z
dc.date.available2018-03-28T21:33:03Z
dc.identifier
dc.identifierJournal Of Biological Chemistry. , v. 287, n. 33, p. 28152 - 28162, 2012.
dc.identifier219258
dc.identifier10.1074/jbc.M112.340638
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84864999268&partnerID=40&md5=16802be82b729f94aa596eb8be1e7264
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97298
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97298
dc.identifier2-s2.0-84864999268
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246935
dc.descriptionOver 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils. R248Q had a greater tendency to aggregate than WT p53. Full-length p53 aggregated into amyloid-like species that bound thioflavin T. The amyloid nature of the aggregates was demonstrated using x-ray diffraction, electron microscopy, FTIR, dynamic light scattering, cell viabilility assay, and anti-amyloid immunoassay. The x-ray diffraction pattern of the fibrillar aggregates was consistent with the typical conformation of cross β-sheet amyloid fibers with reflexions of 4.7 Å and 10 Å. A seed of R248Q p53C amyloid oligomers and fibrils accelerated the aggregation of WT p53C, a behavior typical of a prion. The R248Q mutant co-localized with amyloid-like species in a breast cancer sample, which further supported its prion-like effect. A tumor cell line containing mutant p53 also revealed massive aggregation of p53 in the nucleus. We conclude that aggregation of p53 into a mixture of oligomers and fibrils sequestrates the native protein into an inactive conformation that is typical of a prionoid. This prion-like behavior of oncogenic p53 mutants provides an explanation for the negative dominance effect and may serve as a potential target for cancer therapy. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
dc.description287
dc.description33
dc.description28152
dc.description28162
dc.descriptionVousden, K.H., Lane, D.P., p53 in health and disease (2007) Nat. Rev. Mol. Cell Biol., 8, pp. 275-283
dc.descriptionJoerger, A.C., Fersht, A.R., Structural biology of the tumor suppressor p53 (2008) Annu. Rev. Biochem., 77, pp. 557-582
dc.descriptionIshimaru, D., Andrade, L.R., Teixeira, L.S., Quesado, P.A., Maiolino, L.M., Lopez, P.M., Cordeiro, Y., Silva, J.L., Fibrillar aggregates of the tumor suppressor p53 core domain (2003) Biochemistry, 42, pp. 9022-9027
dc.descriptionSilva, J.L., Vieira, T.C., Gomes, M.P., Ano Bom, A.P., Lima, L.M., Freitas, M.S., Ishimaru, D., Foguel, D., Ligand binding and hydration in protein misfolding: Insights from studies of prion and p53 tumor suppressor proteins (2010) Acc. Chem. Res., 43, pp. 271-279
dc.descriptionGalea, C., Bowman, P., Kriwacki, R.W., Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils (2005) Prot. Sci., 14, pp. 2993-3003
dc.descriptionHigashimoto, Y., Asanomi, Y., Takakusagi, S., Lewis, M.S., Uosaki, K., Durell, S.R., Anderson, C.W., Sakaguchi, K., Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer (2006) Biochemistry, 45, pp. 1608-1619
dc.descriptionRigacci, S., Bucciantini, M., Relini, A., Pesce, A., Gliozzi, A., Berti, A., Stefani, M., The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies (2008) Biophys. J., 94, pp. 3635-3646
dc.descriptionIshimaru, D., Ano Bom, A.P., Lima, L.M., Quesado, P.A., Oyama, M.F., De Moura Gallo, C.V., Cordeiro, Y., Silva, J.L., Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation (2009) Biochemistry, 48, pp. 6126-6135
dc.descriptionLevy, C.B., Stumbo, A.C., Ano Bom, A.P., Portari, E.A., Cordeiro, Y., Silva, J.L., De Moura-Gallo, C.V., Co-localization of mutant p53 and amyloid-like protein aggregates in breast tumors (2011) Int. J. Biochem. Cell Biol., 43, pp. 60-64
dc.descriptionXu, J., Reumers, J., Couceiro, J.R., De Smet, F., Gallardo, R., Rudyak, S., Cornelis, A., Schymkowitz, J., Gain of function of mutant p53 by coaggregation with multiple tumor suppressors (2011) Nat. Chem. Biol., 7, pp. 285-295
dc.descriptionChiti, F., Dobson, C.M., Protein misfolding, functional amyloid, and human disease (2006) Annu. Rev. Biochem., 75, pp. 333-366
dc.descriptionPastore, A., Temussi, P.A., The two faces of Janus: Functional interactions and protein aggregation (2012) Curr. Opin. Struct. Biol., 22, pp. 30-37
dc.descriptionButler, J.S., Loh, S.N., Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain (2003) Biochemistry, 42, pp. 2396-2403
dc.descriptionAntony, H., Wiegmans, A.P., Wei, M.Q., Chernoff, Y.O., Khanna, K.K., Munn, A.L., Potential roles for prions and protein-only inheritance in cancer (2011) Cancer Metastasis Rev., 31, pp. 1-19
dc.descriptionHollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., p53 mutations in human cancers (1991) Science, 253, pp. 49-53
dc.descriptionOlivier, M., Hollstein, M., Hainaut, P., TP53 mutations in human cancers: Origins, consequences, and clinical use (2010) Cold Spring Harb. Perspect. Biol., 2, pp. a001008
dc.descriptionCordeiro, Y., Kraineva, J., Gomes, M.P., Lopes, M.H., Martins, V.R., Lima, L.M., Foguel, D., Silva, J.L., The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation (2005) Biophys. J., 89, pp. 2667-2676
dc.descriptionCordeiro, Y., Kraineva, J., Ravindra, R., Lima, L.M., Gomes, M.P., Foguel, D., Winter, R., Silva, J.L., Hydration and packing effects on prion folding and β-sheet conversion. High pressure spectroscopy and pressure perturbation calorimetry studies (2004) J. Biol. Chem., 279, pp. 32354-33259
dc.descriptionGlabe, C.G., Conformation-dependent antibodies target diseases of protein misfolding (2004) Trends Biochem. Sci., 29, pp. 542-547
dc.descriptionLai, Z., Colón, W., Kelly, J.W., The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid (1996) Biochemistry, 35, pp. 6470-6482
dc.descriptionHowie, A.J., Brewer, D.B., Howell, D., Jones, A.P., Physical basis of colors seen in Congo red-stained amyloid in polarized light (2008) Lab. Invest., 88, pp. 232-242
dc.descriptionMoll, U.M., LaQuaglia, M., Bénard, J., Riou, G., Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors (1995) Proc. Natl. Acad. Sci. U.S.A., 92, pp. 4407-4411
dc.descriptionOstermeyer, A.G., Runko, E., Winkfield, B., Ahn, B., Moll, U.M., Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 15190-15194
dc.descriptionBom, A.P., Freitas, M.S., Moreira, F.S., Ferraz, D., Sanches, D., Gomes, A.M., Valente, A.P., Silva, J.L., The p53 core domain is a molten globule at low pH: Functional implications of a partially unfolded structure (2010) J. Biol. Chem., 285, pp. 2857-2866
dc.descriptionGerweck, L.E., Tumor pH: Implications for treatment and novel drug design (1998) Semin. Radiat. Oncol., 8, pp. 176-182
dc.descriptionGomes, M.P., Millen, T.A., Ferreira, P.S.E., Silva, N.L., Vieira, T.C., Almeida, M.S., Silva, J.L., Cordeiro, Y., Prion protein complexed to N2a cellular RNAs through its N-terminal domain forms aggregates and is toxic to murine neuroblastoma cells (2008) J. Biol. Chem., 283, pp. 19616-19625
dc.descriptionIshimaru, D., Lima, L.M., Maia, L.F., Lopez, P.M., Ano Bom, A.P., Valente, A.P., Silva, J.L., Reversible aggregation plays a crucial role on the folding landscape of p53 core domain (2004) Biophys. J., 87, pp. 2691-2700
dc.descriptionSunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B., Blake, C.C., Common core structure of amyloid fibrils by synchrotron X-ray diffraction (1997) J. Mol. Biol., 273, pp. 729-739
dc.descriptionNovitskaya, V., Bocharova, O.V., Bronstein, I., Baskakov, I.V., Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons (2006) J. Biol. Chem., 281, pp. 13828-13836
dc.descriptionVieira, M.N., Forny-Germano, L., Saraiva, L.M., Sebollela, A., Martinez, A.M., Houzel, J.C., De Felice, F.G., Ferreira, S.T., Soluble oligomers from a non-disease related protein mimic Aβ-induced tau hyperphosphorylation and neurodegeneration (2007) J. Neurochem., 103, pp. 736-748
dc.descriptionGomes, M.P., Cordeiro, Y., Silva, J.L., The peculiar interaction between mammalian prion protein and RNA (2008) Prion, 2, pp. 64-66
dc.descriptionElledge, R.M., Clark, G.M., Fuqua, S.A., Yu, Y.Y., Allred, D.C., p53 protein accumulation detected by five different antibodies: Relationship to prognosis and heat shock protein 70 in breast cancer (1994) Cancer Res., 54, pp. 3752-3757
dc.descriptionMoll, U.M., Valea, F., Chumas, J., Role of p53 alteration in primary peritoneal carcinoma (1997) Int. J. Gynecol. Pathol., 16, pp. 156-162
dc.descriptionLambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Klein, W.L., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 6448-6453
dc.descriptionKayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., Glabe, C.G., Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis (2003) Science, 300, pp. 486-489
dc.descriptionGottifredi, V., Prives, C., Molecular biology. Getting p53 out of the nucleus (2001) Science, 292, pp. 1851-1852
dc.descriptionSoussi, T., Béroud, C., Assessing TP53 status in human tumours to evaluate clinical outcome (2001) Nat. Rev. Cancer, 1, pp. 233-240
dc.descriptionChowdary, D.R., Dermody, J.J., Jha, K.K., Ozer, H.L., Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway (1994) Mol. Cell Biol., 14, pp. 1997-2003
dc.descriptionChen, L., Lu, W., Agrawal, S., Zhou, W., Zhang, R., Ubiquitous induction of p53 in tumor cells by antisense inhibition of MDM2 expression (1999) Mol. Med., 5, pp. 21-34
dc.descriptionGoh, A.M., Coffill, C.R., Lane, D.P., The role of mutant p53 in human cancer (2011) J. Pathol., 223, pp. 116-126
dc.descriptionJoerger, A.C., Rajagopalan, S., Natan, E., Veprintsev, D.B., Robinson, C.V., Fersht, A.R., Structural evolution of p53, p63, and p73: Implication for heterotetramer formation (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 17705-17710
dc.descriptionNicholls, C.D., McLure, K.G., Shields, M.A., Lee, P.W., Biogenesis of p53 involves cotranslational dimerization of monomers and post-translational dimerization of dimers. Implications on the dominant negative effect (2002) J. Biol. Chem., 277, pp. 12937-12945
dc.descriptionAguzzi, A., Rajendran, L., The transcellular spread of cytosolic amyloids, prions, and prionoids (2009) Neuron, 64, pp. 783-790
dc.descriptionFrost, B., Diamond, M.I., Prion-like mechanisms in neurodegenerative diseases (2010) Nat. Rev. Neurosci., 11, pp. 155-159
dc.descriptionPark, S.J., Borin, B.N., Martinez-Yamout, M.A., Dyson, H.J., The client protein p53 adopts a molten globule-like state in the presence of Hsp90 (2011) Nat. Struct. Mol. Biol., 18, pp. 537-541
dc.descriptionKocisko, D.A., Vaillant, A., Lee, K.S., Arnold, K.M., Bertholet, N., Race, R.E., Olsen, E.A., Caughey, B., Potent antiscrapie activities of degenerate phosphorothioate oligonucleotides (2006) Antimicrob. Agents Chemother., 50, pp. 1034-1044
dc.descriptionCaughey, B., Caughey, W.S., Kocisko, D.A., Lee, K.S., Silveira, J.R., Morrey, J.D., Prions and transmissible spongiform encephalopathy (TSE) chemotherapeutics: A common mechanism for anti-TSE compounds? (2006) Acc. Chem. Res., 39, pp. 646-653
dc.descriptionVieira, T.C., Reynaldo, D.P., Gomes, M.P., Almeida, M.S., Cordeiro, Y., Silva, J.L., Heparin binding by murine recombinant prion protein leads to transient aggregation and formation of RNA-resistant species (2010) J. Am. Chem. Soc., 133, pp. 334-344
dc.languageen
dc.publisher
dc.relationJournal of Biological Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleMutant P53 Aggregates Into Prion-like Amyloid Oligomers And Fibrils: Implications For Cancer
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución