dc.creatorde Oliveira Taipina M.
dc.creatorFerrarezi M.M.F.
dc.creatorGoncalves M.C.
dc.date2012
dc.date2015-06-26T20:30:16Z
dc.date2015-11-26T14:29:20Z
dc.date2015-06-26T20:30:16Z
dc.date2015-11-26T14:29:20Z
dc.date.accessioned2018-03-28T21:32:33Z
dc.date.available2018-03-28T21:32:33Z
dc.identifier
dc.identifierCellulose. , v. 19, n. 4, p. 1199 - 1207, 2012.
dc.identifier9690239
dc.identifier10.1007/s10570-012-9715-3
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84862243105&partnerID=40&md5=ac9a4aad23e87962329ea2abeab24c58
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/97280
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/97280
dc.identifier2-s2.0-84862243105
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246812
dc.descriptionCellulose whiskers were obtained by means of sulfuric acid hydrolysis of curauá fibers. Before hydrolysis, the natural fibers were treated with an alkaline solution to remove the non-cellulosic content. Fiber degradation evolution and cellulose whisker formation were analyzed by structural and morphological analysis. The original fiber structure underwent a fragmentation mechanism after being exposed for 3 min to sulfuric acid. Cellulose whiskers were lixiviated from the fiber surface after 10 min of hydrolysis, developing two scenarios: one where the whiskers became unattached from the original fiber, and the other which remained attached. The cellulose whiskers presented a needle-like geometry with an approximate diameter of 11 nm and average length of 185 nm, after 30 min of acid hydrolysis. Based on microscopic characterization, a schematic representation of the morphological evolution of the cellulose fibers submitted to acid hydrolysis is proposed. © 2012 Springer Science+Business Media B.V.
dc.description19
dc.description4
dc.description1199
dc.description1207
dc.descriptionAraki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose (1998) Colloids Surf A, 142, pp. 75-82
dc.descriptionAyuk, J.E., Mathew, A.P., Oksman, K., The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites (2009) J Appl Polym Sci, 114, pp. 2723-2730
dc.descriptionBarnett, J.R., Bonham, V.A., Cellulose microfibril angle in the cell wall of wood fibres (2004) Biol Rev, 79, pp. 461-472
dc.descriptionBellamy, L.J., (1966) The Infrared Spectra of Complex Molecules, , New York: Wiley
dc.descriptionBledzki, A.K., Gassan, J., Composites reinforced with cellulose based fibres (1999) Prog Polym Sci, 24, pp. 221-274
dc.descriptionBrown Jr., R.M., Saxena, I.M., Kudlicka, K., Cellulose biosynthesis in higher plants (1996) Trends Plant Sci, 1, pp. 149-156
dc.descriptionCandanedo, S.B., Roman, M., Gray, D.G., Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions (2005) Biomacromol, 6, pp. 1048-1054
dc.descriptionCapadona, J.R., Shanmuganathan, K., Trittschuh, S., Seidel, S., Rowan, S.J., Weder, C., Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose (2009) Biomacromol, 10, pp. 712-716
dc.descriptionCorrêa, A.C., Teixeira, E.M., Pessan, L.A., Mattoso, L.H.C., Cellulose nanofibers from curaua fibers (2010) Cellulose, 17, pp. 1183-1192
dc.descriptionDong, X.M., Revol, J.-F., Gray, D.G., Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose (1998) Cellulose, 5, pp. 19-32
dc.descriptionDurán, N., Lemes, A.P., Durán, M., Freer, J., Baeza, J., A minireview of cellulose nanocrystals and its potential integration as co-product in bioethanol production (2011) J Chil Chem Soc, 56, pp. 672-677
dc.descriptionEichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Peijs, T., Review: current international research into cellulose nanofibres and nanocomposites (2010) J Mater Sci, 45, pp. 1-33
dc.descriptionFavier, V., Cavaille, J.Y., Chanzy, H., Polymer nanocomposites reinforced by cellulose whiskers (1995) Macromolecules, 28, pp. 6365-6367
dc.descriptionGeorge, J., Ramana, K.V., Bawa, A.S., Siddaramaiah, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites (2011) Inter J Biol Macromol, 48, pp. 50-57
dc.descriptionGoussé, C., Chanzy, H., Excoffier, G., Soubeyrand, L., Fleury, E., Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents (2002) Polymer, 43, pp. 2645-2651
dc.descriptionHabibi, Y., Lucia, L., Rojas, O., Cellulose nanocrystals: chemistry, self-assembly, and applications (2010) Chem Rev, 110, pp. 3479-3500
dc.descriptionHon, D.N.-S., Shiraishi, N., (1990) Wood and cellulose chemistry, , Chaps 2-5, 10. Marcel Dekker Inc, New York
dc.descriptionIsogai, A., Usuda, M., Kato, T., Uryu, T., Atalla, R.H., High-resolution images of defects in liquid crystalline polymers in the smectic and crystalline phases (1989) Macromolecules, 22, pp. 168-173
dc.descriptionKlemm, D., Heublein, B., Fink, H.P., Bohn, A., Cellulose: fascinating biopolymer and sustainable raw material (2005) Angew Chem Int Ed Engl, 44, pp. 3358-3393
dc.descriptionLima, M.M.S., Borsali, R., Rodlike cellulose microcrystals: structure, properties, and applications (2004) Macrom Rapid Commun, 25, pp. 771-787
dc.descriptionLin, N., Chen, G., Huang, J., Dufresne, A., Chang, P.R., Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone (2009) J Appl Polym Sci, 113, pp. 3417-3425
dc.descriptionPandey, J.K., Lee, C.S., Ahn, S.-H., Kim, C.-S., Chu, W.-S., Jang, D.-Y., Evaluation of morphological architecture of cellulose chains in grass during conversion from macro to nano dimensions (2009) E-Polymers, 102, pp. 1-15
dc.descriptionPandey, J.K., Lee, C.S., Ahn, S.-H., Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers (2010) J Appl Polym Sci, 115, pp. 2493-2501
dc.descriptionRanby, B.G., The cellular micelles (1952) Tappi, 35, pp. 53-58
dc.descriptionRay, S.S., Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world (2005) Prog Mater Sci, 50, pp. 962-1079
dc.descriptionRoman, M., Winter, T., Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose (2004) Biomacromol, 5, pp. 1671-1677
dc.descriptionSamir, M.A.S.A., Alloin, F., Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field (2005) Biomacromol, 6, pp. 612-626
dc.descriptionSanchez-Garcia, M.D., Lagaron, J.M., On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid (2010) Cellulose, 17, pp. 987-1004
dc.descriptionSpeck, T., Burget, I., Plant stems: functional design and mechanics (2011) Annu Rev Mater Res, 41, pp. 169-193
dc.descriptionSpinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., de Paoli, M.-A., Characterization of lignocellulosic curaua fibres (2009) Carbohyd Polym, 77, pp. 47-53
dc.descriptionSturcova, A., Davies, J.R., Eichhorn, S.J., Elastic modulus and stress-transfer properties of tunicate cellulose whiskers (2005) Biomacromol, 6, pp. 1055-1061
dc.descriptionThygesen, A., Oddershede, J., Lilhot, H., Thomsen, A.B., Stahl, K., On the determination of crystallinity and cellulose content in plant fibres (2005) Cellulose, 12, pp. 563-576
dc.descriptionWan, N., Ding, E., Cheng, R., Preparation and liquid crystalline properties of spherical cellulose nanocrystals (2008) Langmuir, 24, pp. 5-8
dc.descriptionYu, L., Dean, K., Li, L., Polymer blends and composites from renewable resources (2006) Prog Polym Sci, 31, pp. 576-602
dc.descriptionZhao, H., Kwak, J.H., Zhang, Z.C., Brown, H.M., Arey, B.W., Holladay, J.E., Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis (2007) Carbohyd Polym, 68, pp. 235-241
dc.languageen
dc.publisher
dc.relationCellulose
dc.rightsfechado
dc.sourceScopus
dc.titleMorphological Evolution Of Curauá Fibers Under Acid Hydrolysis
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución