Actas de congresos
Adapted Dynamic Meshes For Deformable Surfaces
Registro en:
0769526861; 9780769526867
Brazilian Symposium Of Computer Graphic And Image Processing. , v. , n. , p. 213 - 220, 2006.
15301834
10.1109/SIBGRAPI.2006.6
2-s2.0-34948901864
Autor
De Goes F.
Bergo F.P.G.
Falcao A.X.
Goldenstein S.
Velho L.
Institución
Resumen
Deformable objects play an important role in many applications, such as animation and simulation. Effective computation with deformable surfaces can be achieved through the use of dynamic meshes. In this paper, we introduce a framework for constructing and maintaining a time-varying adapted mesh structure that conforms to the under-lying deformable surface. The adaptation function employs error metrics based on stochastic sampling. Our scheme combines normal and tangential geometric correction with refinement and simplification resolution control. Furthermore, it applies to both parametric and implicit surface descriptions. As the result, we obtain a simple and efficient general scheme that can be used for a wide range of computations. © 2006 IEEE.
213 220 Bergo, F.P.G., Falcão, A.X., Fast and automatic curvilinear reformatting of MR images of the brain for diagnosis of dysplastic lesions (2006) IEEE International Symposium on Biomedical Imaging Berti, G., (2000) Generic software components for Scientific Computing, , PhD thesis, BTU Cottbus Botsch, M., Steinberg, S., Bischoff, S., Kobbelt, L., Openmesh - a generic and efficient polygon mesh data structure (2002) OpenSG PLUS Symposium Bowden, R., Mitchell, T., Sahardi, M., Real-time dynamic deformable meshes for volumetric segmentation and visualization (1997) Proc. BMVC, , 11:310-1=319 Cohen-Steiner, D., Alliez, P., Desbrun, M., Variational shape approximation (2004) ACM Transactions on Graphics, 23 (3), pp. 905-914. , Aug DeCoro, C., Rusinkiewicz, S., Pose-independent simplification of articulated meshes (2005) SI3D '05: Proceedings of the 2005 symposium on Interactive 3D graphics and games, pp. 17-24. , New York, NY, USA, ACM Press Dey, T., Edelsbrunner, H., Guha, S., Computational topology (1999) Contemporary mathematics, 223, pp. 109-143. , B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry, American Mathematical Society Duan, Y., Hua, J., Qin, H., Interactive shape modeling using lagrangian surface flow (2005) Visual Comp, 21 (5), pp. 279-288 Duchaineau, M.A., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev-Weinstein, M.B., Roaming terrain: Real-time optimally adapting meshes (1997) IEEE Visualization '97, pp. 81-88. , Nov Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schonherr, S., On the design of CGAL a computational geometry algorithms library (2000) SP&E, 30 (11), pp. 1167-1202 L. D. Floriani, P. Magillo, and E. Puppo. Efficient implementation of multi-triangulations. In D. Ebert, H. Hagen, and H. Rushmeier, editors, IEEE Visualization '98, pages 43-50, 1998L. D. Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. In W. S. er, R. Klein, and R. Rau, editors, Theory and Practice of Geometric Modeling. SpringerVerlag, 1996Garland, M., Multiresolution modeling: Survey & future opportunities (1999) Eurographics, State of the Art Report Garland, M., Zhou, Y., Quadric-based simplification in any dimension (2005) ACM Trans. on Graphics, 24 (2), pp. 209-239 Hoppe, H., Efficient implementation of progressive meshes (1998) Computers & Graphics, 22 (1), pp. 27-36. , February Kircher, S., Garland, M., Progressive multiresolution meshes for deforming surfaces (2005) 2005 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 191-200. , July Kobbelt, L.P., Bareuther, T., Seidel, H.-P., Multiresolution shape deformations for meshes with dynamic vertex connectivity (2000) Computer Graphics Forum, 19 (3) Lindstrom, P., Pascucci, V., Terrain simplification simplified: A general framework for view-dependent out-of-core visualization (2002) IEEE Transactions on Visualization and Computer Graphics, 8 (3), pp. 239-254. , July, September Puppo, E., Variable resolution triangulations (1998) Computational Geometry Theory and Applications, 11 (34), pp. 219-238 P. Schroeder. Subdivision for modeling and animation, 1998. Course notes of Siggraph 98. ACM SIGGRAPHShamir, A., Bajaj, C.L., Pascucci, V., Multi-resolution dynamic meshes with arbitrary deformations (2000) IEEE Visualization, pp. 423-430 Velho, L., A dynamic adaptive mesh library based on stellar operators (2004) Journal of Graphics Tools, 9 (2), pp. 1-29 Velho, L., Gomes, J., Variable resolution 4-k meshes: Concepts and applications (2000) Comp. Graphics Forum, 19, pp. 195-212 Velho, L., Zorin, D., 4-8 subdivision (2001) Computer-Aided Geometric Design, 18 (5), pp. 397-427. , Special Issue on Subdivision Techniques Welch, W., Witkin, A., Free-form shape design using triangulated surfaces (1994) SIGGRAPH, pp. 247-256 Wood, Z.J., Desbrun, M., Schröder, P., Breen, D., Semiregular mesh extraction from volumes (2000) IEEE Visualization 2000, pp. 275-282. , Oct