dc.creatorSmetana J.H.C.
dc.creatorOliveira C.L.P.
dc.creatorJablonka W.
dc.creatorAguiar Pertinhez T.
dc.creatorCarneiro F.R.G.
dc.creatorMontero-Lomeli M.
dc.creatorTorriani I.
dc.creatorZanchin N.I.T.
dc.date2006
dc.date2015-06-30T18:17:48Z
dc.date2015-11-26T14:29:10Z
dc.date2015-06-30T18:17:48Z
dc.date2015-11-26T14:29:10Z
dc.date.accessioned2018-03-28T21:32:23Z
dc.date.available2018-03-28T21:32:23Z
dc.identifier
dc.identifierBiochimica Et Biophysica Acta - Proteins And Proteomics. , v. 1764, n. 4, p. 724 - 734, 2006.
dc.identifier15709639
dc.identifier10.1016/j.bbapap.2006.01.018
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33646488202&partnerID=40&md5=7238a8b13d32fa9cde49526903d2820f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103862
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103862
dc.identifier2-s2.0-33646488202
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246770
dc.descriptionThe yeast Tap42 and mammalian α4 proteins belong to a highly conserved family of regulators of the type 2A phosphatases, which participate in the rapamycin-sensitive signaling pathway, connecting nutrient availability to cell growth. The mechanism of regulation involves binding of Tap42 to Sit4 and PPH21/22 in yeast and binding of α4 to the catalytic subunits of type 2A-related phosphatases PP2A, PP4 and PP6 in mammals. Both recombinant proteins undergo partial proteolysis, generating stable N-terminal fragments. The full-length proteins and α4 C-terminal deletion mutants at amino acids 222 (α4Δ222), 236 (α4Δ236) and 254 (α4Δ254) were expressed in E. coli. α4Δ254 undergoes proteolysis, producing a fragment similar to the one generated by full-length α4, whereas α4Δ222 and α4Δ236 are highly stable proteins. α4 and Tap42 show α-helical circular dichroism spectra, as do their respective N-terminal proteolysis resistant products. The cloned truncated proteins α4Δ222 and α4Δ236, however, possess a higher content of α-helix, indicating that the C-terminal region is less structured, which is consistent with its higher sensitivity to proteolysis. In spite of their higher secondary structure content, α4Δ222 and α4Δ236 showed thermal unfolding kinetics similar to the full-length α4. Based on small angle X-ray scattering (SAXS), the calculated radius of gyration for α4 and Tap42 were 41.2 ± 0.8 Å and 42.8 ± 0.7 Å and their maximum dimension ∼142 Å and ∼147 Å, respectively. The radii of gyration for α4Δ222 and α4Δ236 were 21.6 ± 0.3 Å and 25.7 ± 0.2 Å, respectively. Kratky plots show that all studied proteins show variable degree of compactness. Calculation of model structures based on SAXS data showed that α4Δ222 and α4Δ236 proteins have globular conformation, whereas α4 and Tap42 exhibit elongated shapes. © 2006 Elsevier B.V. All rights reserved.
dc.description1764
dc.description4
dc.description724
dc.description734
dc.descriptionSchmelzle, T., Hall, M.N., TOR, a central controller of cell growth (2000) Cell, 103, pp. 253-262
dc.descriptionHay, N., Sonenberg, N., Upstream and downstream of mTOR (2004) Genes Dev., 18, pp. 1926-1945
dc.descriptionDi Como, C.J., Arndt, K.T., Nutrients, via the TOR proteins, stimulate the association of Tap42p with type 2A phosphatases (1996) Genes Dev., 10, pp. 1904-1916
dc.descriptionKuwahara, K., Matsuo, T., Nomura, J., Igarashi, H., Kimoto, M., Inui, S., Sakaguchi, N., Identification of a 52-kDa molecule (p52) coprecipitated with the Ig receptor-related MB-1 protein that is inducibly phosphorylated by the stimulation with phorbol myristate acetate (1994) J. Immunol., 152, pp. 2742-2752
dc.descriptionToo, C.K., Differential expression of elongation factor-2, alpha4 phosphoprotein and Cdc5-like protein in prolactin-dependent/independent rat lymphoid cells (1997) Mol. Cell. Endocrinol., 131, pp. 221-232
dc.descriptionBinh, L.T., Oono, K., Molecular cloning and characterization of genes related to chilling tolerance in rice (1992) Plant Physiol., 99, pp. 1146-1150
dc.descriptionHarris, D.M., Myrick, T.L., Rundle, S.J., The Arabidopsis ortholog of yeast TAP42p and mammalian alpha4 binds to the catalytic subunit of protein phosphatase 2A and is induced by chilling (1999) Plant Physiol., 121, pp. 609-617
dc.descriptionInui, S., Kuwahara, K., Mizutani, J., Maeda, K., Kawai, T., Nakayasu, H., Sakaguchi, N., Molecular cloning of a cDNA clone encoding a phosphoprotein component related to the Ig receptor-mediated signal transduction (1995) J. Immunol., 154, pp. 2714-2723
dc.descriptionInui, S., Maeda, K., Hua, D.R., Yamashita, T., Yamamoto, H., Miyamoto, E., Aizawa, S., Sakaguchi, N., BCR signal through alpha 4 is involved in S6 kinase activation and required for B cell maturation including isotype switching and V region somatic hypermutation (2002) Int. Immunol., 14, pp. 177-187
dc.descriptionHua, D.R., Inui, S., Yamashita, T., Maeda, K., Takagi, K., Takeda, J., Sakaguchi, N., T cell-specific gene targeting reveals that alpha4 is required for early T cell development (2003) Eur. J. Immunol., 33, pp. 1899-1906
dc.descriptionKong, M., Fox, C.J., Mu, J., Solt, L., Xu, A., Cinalli, R.M., Birnbaum, M.J., Thompson, C.B., The PP2A-associated protein α4 is an essential inhibitor of apoptosis (2004) Science, 306, pp. 695-698
dc.descriptionLiu, J., Prickett, T.D., Elliott, E., Meroni, G., Brautigan, D.L., Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit α4 (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 6650-6655
dc.descriptionShort, K., Hopwood, B., Yi, Z., Cox, T.C., MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, Alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders (2002) BMC Cell Biol., 3, p. 1
dc.descriptionGoldberg, Y., Protein phosphatase 2A: who shall regulate the regulator? (1999) Biochem. Pharmacol., 57, pp. 321-328
dc.descriptionPrickett, T.D., Brautigan, D.L., Overlapping binding sites in protein phosphatase 2A for association with regulatory A and α-4 (mTap42) subunits (2004) J. Biol. Chem., 279, pp. 38912-38920
dc.descriptionMurata, K., Wu, J., Brautigan, D.L., B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 10624-10629
dc.descriptionChung, H., Nairn, A.C., Murata, K., Brautigan, D.L., Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2 (1999) Biochemistry, 38, pp. 10371-10376
dc.descriptionInui, S., Sanjo, H., Maeda, K., Yamamoto, H., Miyamoto, E., Sakaguchi, N., Ig receptor binding protein 1 (α4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A (1998) Blood, 92, pp. 539-546
dc.descriptionYamashita, T., Inui, S., Maeda, K., Hua, D.R., Takagi, K., Sakaguchi, N., The heterodimer of alpha4 and PP2Ac is associated with S6 kinase1 in B cells (2005) Biochem. Biophys. Res. Commun., 330 (2), pp. 439-445
dc.descriptionChen, J., Peterson, R.T., Schreiber, S.L., Alpha 4 associates with protein phosphatases 2A, 4, and 6 (1998) Biochem. Biophys. Res. Commun., 247, pp. 827-832
dc.descriptionNanahoshi, M., Nishiuma, T., Tsujishita, Y., Hara, K., Inui, S., Sakaguchi, N., Yonezawa, K., Regulation of protein phosphatase 2A catalytic activity by alpha4 protein and its yeast homolog Tap42 (1998) Biochem. Biophys. Res. Commun., 251, pp. 520-526
dc.descriptionKloerker, S., Reed, R., McConell, J.L., Chang, D., Tran, K., Westphal, R.S., Law, B.K., Wadzinski, B.E., Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase family (PP2Ac, PP4c and PP6c) and analysis of the interaction of PP2Ac with alpha4 protein (2003) Protein Expr. Purif., 31, pp. 19-33
dc.descriptionFink, A.L., Natively unfolded proteins (2005) Curr. Opin. Struct. Biol., 15, pp. 35-41
dc.descriptionBracken, C., Iakoucheva, L.M., Romero, P.R., Dunker, A.K., Combining prediction, computation and experiment for the characterization of protein disorder (2004) Curr. Opin. Struct. Biol., 14, pp. 570-576
dc.descriptionUversky, V.N., What does it mean to be natively unfolded? (2002) Eur. J. Biochem., 269, pp. 2-12
dc.descriptionWard, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F., Jones, D.T., Prediction and functional analysis of native disorder in proteins from the three kingdoms of life (2004) J. Mol. Biol., 337, pp. 635-645
dc.descriptionIakoucheva, L.M., Brown, C.J., Lawson, J.D., Obradovic, Z., Dunker, A.K., Intrinsic disorder in cell-signaling and cancer-associated proteins (2002) J. Mol. Biol., 323, pp. 573-584
dc.descriptionAusubel, F.M., Brent, R., Kingston, R., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K., (1998) Current Protocols in Molecular Biology, , John Wiley and Sons, New York
dc.descriptionGans, P.J., Lyu, P.C., Manning, M.C., Woody, R.W., Kallenbach, N.R., The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data (1991) Biopolymers, 31, pp. 1605-1614
dc.descriptionRost, B., PHD: predicting one-dimensional protein structure by profile-based neural networks (1996) Methods Enzymol., 266, pp. 525-539
dc.descriptionRomero, P., Obradovic, Z., Dunker, A.K., Sequence data analysis for long disordered regions prediction in the calcineurin family (1997) Genomics Inf., 8, pp. 110-124
dc.descriptionUversky, V.N., Gillespie, J.R., Fink, A.L., Why are "natively unfolded" proteins unstructured under physiologic conditions? (2000) Proteins, 41, pp. 415-427
dc.descriptionCavalcanti, L.P., Torriani, I.L., Plivelic, T.S., Oliveira, C.L.P., Kellermann, G., Neuenschwander, R., Two new sealed sample cells for small angle X-ray scattering from macromolecules in solution and complex fluids using synchrotron radiation (2004) Rev. Sci. Instrum., 75, pp. 4541-4546
dc.descriptionSemenyuk, V., Svergun, D.I., GNOM-A program package for small-angle scattering data-processing (1991) J. Appl. Cryst., 24, pp. 537-540
dc.descriptionSvergun, D.I., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing (1999) Biophys. J., 76, pp. 2879-2886
dc.descriptionSvergun, D.I., Petoukhov, M.V., Koch, M.H.J., Determination of domain structure of proteins from X-ray solution scattering (2001) Biophys. J., 80, pp. 2946-2953
dc.descriptionVolkov, V.V., Svergun, D.I., Uniqueness of ab initio shape determination in small-angle scattering (2003) J. Appl. Cryst., 36, pp. 860-864
dc.descriptionGlatter, O., Kratky, O., (1982) Small Angle X-ray Scattering, , Academic Press, London
dc.descriptionSvergun, D.I., Koch, M.H.J., Small-angle scattering studies of biological macromolecules in solution (2003) Rep. Prog. Phys., 66, pp. 1735-1782
dc.descriptionBilecen, K., Ozturk, U.H., Duru, A.D., Sutlu, T., Petoukhov, M.V., Svergun, D.I., Koch, M.H., Sayers, Z., Triticum durum metallothionein. Isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling (2005) J. Biol. Chem., 280, pp. 13701-13711
dc.descriptionPetoukhov, M.V., Svergun, D.I., Global rigid body modeling of macromolecular complexes against small-angle scattering data (2005) Biophys. J., 89, pp. 1237-1250
dc.descriptionIakoucheva, L.M., Radivojac, P., Brown, C.J., O'Connor, T.R., Sikes, J.G., Obradovic, Z., Dunker, A.K., The importance of intrinsic disorder for protein phosphorylation (2004) Nucleic Acids Res., 32, pp. 1037-1049
dc.descriptionDyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions (2005) Nat. Rev., Mol. Cell Biol., 6, pp. 197-208
dc.descriptionUversky, V.N., Natively unfolded proteins: a point where biology waits for physics (2002) Protein Sci., 11, pp. 739-756
dc.descriptionNanahoshi, M., Tsujishita, Y., Tokunaga, C., Inui, S., Sakaguchi, N., Hara, K., Yonezawa, K., Alpha4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases (1999) FEBS Lett., 446, pp. 108-112
dc.languageen
dc.publisher
dc.relationBiochimica et Biophysica Acta - Proteins and Proteomics
dc.rightsfechado
dc.sourceScopus
dc.titleLow Resolution Structure Of The Human α4 Protein (igbp1) And Studies On The Stability Of α4 And Of Its Yeast Ortholog Tap42
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución