dc.creatorPalermo Jr. L.
dc.creatorAlmeida L.P.C.P.F.
dc.creatorGoncalves P.C.
dc.date2006
dc.date2015-06-30T18:17:41Z
dc.date2015-11-26T14:29:02Z
dc.date2015-06-30T18:17:41Z
dc.date2015-11-26T14:29:02Z
dc.date.accessioned2018-03-28T21:32:15Z
dc.date.available2018-03-28T21:32:15Z
dc.identifier
dc.identifierSid Structural Integrity And Durability. , v. 2, n. 2, p. 123 - 130, 2006.
dc.identifier15513750
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-77951821517&partnerID=40&md5=26b1fe98110519c4847c9bae13bf0afa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103855
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103855
dc.identifier2-s2.0-77951821517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246747
dc.descriptionThe kernels of integrands are usually differentiated to obtain the general boundary integral equation (BIE) for stresses and its corresponding traction equation. An alternative BIE for stresses can be obtained when the tangential differential operator is introduced in problems using Kelvin type fundamental solutions. The order of the singularity is reduced with this strategy and the Cauchy principal value sense or the first order regularization can be used in the resultant BIE. The dual boundary element formulation with the BIE for tractions using the tangential differential operator is analyzed in the present study. Shape functions with same expressions for conformal or non-conformal interpolations are adopted and conformal interpolations were applied on the crack surface without losing the accuracy of the dual formulation. The results obtained are compared with solutions available from the literature to evaluate the formulation. Copyright © 2006 Tech Science Press.
dc.description2
dc.description2
dc.description123
dc.description130
dc.descriptionAliabadi, M.H., Boundary element formulations in fracture mechanics (1997) Appl. Mech. Rev., 50, pp. 83-96
dc.descriptionAlmeida, L.P.C.P.F., Palermo Jr., L., On the implementation of the two dimensional dual boundary element method for crack problems (2004) 5th Int. Conference on Boundary Elements Techniques, , Lisboa, Portugal
dc.descriptionBlandford, G.E., Ingraffea, T.A., Liggett, J.A., Two-dimensional stress intensity factor computations using the boundary element method (1976) International Journal of Numerical Methods in Engineering, 17, pp. 387-404
dc.descriptionBonnet, M., (1999) Boundary Integral Equation Methods for Solids and Fluids, , JohnWiley & Sons Ltd
dc.descriptionChen, W.H., Chen, T.C., An efficient dual boundary element technique for a two-dimensional fracture problem with multiple cracks (1995) International Journal of Numerical Methods in Engineering, 38, pp. 1739-1756
dc.descriptionCivelek, M.B., Erdogan, F., CRACK PROBLEMS FOR A RECTANGULAR PLATE AND AN INFINITE STRIP. (1982) International Journal of Fracture, 19 (2), pp. 139-159
dc.descriptionCrouch, S.L., Solution of plane elasticity problems by the displacement discontinuity method (1976) International Journal of Numerical Methods in Engineering, 10, pp. 301-342. , 1976
dc.descriptionGuiggiani, M., Hypersingular formulation for boundary stresses evaluation (1994) Eng. Anal. Bound. Elem., 14, pp. 169-179
dc.descriptionGuimarães, S., Telles, J.C.F., General application of numerical Green's functions for SIF computations with boundary elements (2000) CMES - Computer Modeling in Engineering & Sciences, 1, pp. 131-139
dc.descriptionKupradze, V.D., (1979) Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, , North Holand
dc.descriptionMi, Y., Aliabadi, M.H., Dual boundary element method for three-dimensional fracture mechanics analysis (1992) Engineering Analysis with Boundary Elements, 10 (2), pp. 161-171. , DOI 10.1016/0955-7997(92)90047-B
dc.descriptionMurakami, Y., (1987) Stress Intensity Factors Handbook, , Pergamon Press, Oxford
dc.descriptionPortela, A., Aliabadi, M.H., Rooke, D.P., The dual boundary element method: Effective implementation for crack problems (1992) International Journal of Numerical Methods in Engineering, 33, pp. 1269-1287. , 1992
dc.descriptionSladek, V., Sladek, J., THREE-DIMENSIONAL CURVED CRACK IN AN ELASTIC BODY. (1983) International Journal of Solids and Structures, 19 (5), pp. 425-436
dc.descriptionSnyder, M.D., Cruse, T.A., Boundary integral equation analysis of cracked anisotropic plates (1975) International Journal of Fracture, 11, pp. 315-342
dc.descriptionWen, P.H., (1996) Dynamic fracture mechanics: Displacement discontinuity method, , Computational Mechanics Publications
dc.languageen
dc.publisher
dc.relationSID Structural Integrity and Durability
dc.rightsfechado
dc.sourceScopus
dc.titleThe Use Of The Tangential Differential Operator In The Dual Boundary Element Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución