dc.creatorVelloso L.A.
dc.creatorFolli F.
dc.creatorPerego L.
dc.creatorSaad M.J.A.
dc.date2006
dc.date2015-06-30T18:17:01Z
dc.date2015-11-26T14:28:58Z
dc.date2015-06-30T18:17:01Z
dc.date2015-11-26T14:28:58Z
dc.date.accessioned2018-03-28T21:32:12Z
dc.date.available2018-03-28T21:32:12Z
dc.identifier
dc.identifierDiabetes/metabolism Research And Reviews. , v. 22, n. 2, p. 98 - 107, 2006.
dc.identifier15207552
dc.identifier10.1002/dmrr.611
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-33644982837&partnerID=40&md5=818b1e381ad4c9ca13c40a0451dc4dc5
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/103824
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/103824
dc.identifier2-s2.0-33644982837
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1246732
dc.descriptionInsulin and angiotensin II are hormones that play pivotal roles in the control of two vital and closely related systems, the metabolic and the circulatory systems, respectively. A failure in the proper action of each of these hormones results, to a variable degree, in the development of two highly prevalent and commonly overlapping diseases - diabetes mellitus and hypertension. In recent years, a series of studies has revealed a tight connection between the signal transduction pathways that mediate insulin and angiotensin II actions in target tissues. This molecular cross-talk occurs at multiple levels and plays an important role in phenomena that range from the action of anti-hypertensive drugs to cardiac hypertrophy and energy acquisition by the heart. At the extracellular level, the angiotensin-converting enzyme controls angiotensin II synthesis but also interferes with insulin signaling through the proper regulation of angiotensin II and through the accumulation of bradykinin. At an early intracellular level, angiotensin II, acting through JAK-2/IRS-1/PI3-kinase, JNK and ERK, may induce the serine phosphorylation and inhibition of key elements of the insulin-signaling pathway. Finally, by inducing the expression of the regulatory protein SOCS-3, angiotensin II may impose a late control on the insulin signal. This review will focus on the main advances obtained in this field and will discuss the implications of this molecular cross-talk in the common clinical association between diabetes mellitus and hypertension. Copyright © 2006 John Wiley & Sons, Ltd.
dc.description22
dc.description2
dc.description98
dc.description107
dc.descriptionPessin, J.E., Saltiel, A.R., Signaling pathways in insulin action: Molecular targets of insulin resistance (2000) J Clin Invest, 106, pp. 165-169
dc.descriptionKahn, B.B., Flier, J.S., Obesity and insulin resistance (2000) J Clin Invest, 106, pp. 473-481
dc.descriptionOlefsky, J.M., Saltiel, A.R., PPAR gamma and the treatment of insulin resistance (2000) Trends Endocrinol Metab, 11, pp. 362-368
dc.descriptionReaven, G., The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals (2004) Endocrinol Metab Clin North Am, 33, pp. 283-303
dc.descriptionWang, C.C., Goalstone, M.L., Draznin, B., Molecular mechanisms of insulin resistance that impact cardiovascular biology (2004) Diabetes, 53, pp. 2735-2740
dc.descriptionReaven, G., Abbasi, F., McLaughlin, T., Obesity, insulin resistance, and cardiovascular disease (2004) Recent Prog Horm Res, 59, pp. 207-223
dc.descriptionNatali, A., Ferrannini, E., Hypertension, insulin resistance, and the metabolic syndrome (2004) Endocrinol Metab Clin North Am, 33, pp. 417-429
dc.descriptionShulman, G.I., Cellular mechanisms of insulin resistance in humans (1999) Am J Cardiol, 84, pp. 3J-10J
dc.descriptionSaltiel, A.R., Kahn, C.R., Insulin signaling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806
dc.descriptionMalbon, C.C., Insulin signaling: Putting the 'G-' In protein-protein interactions (2004) Biochem J, 380, pp. e11-e12
dc.descriptionMuller, G., Dynamics of plasma membrane microdomains and cross-talk to the insulin signaling cascade (2002) FEBS Lett, 531, pp. 81-87
dc.descriptionExecutive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of high Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497
dc.descriptionGriendling, K.K., Lassegue, B., Murphy, T.J., Alexander, R.W., Angiotensin II receptor pharmacology (1994) Adv Pharmacol, 28, pp. 269-306
dc.descriptionShirai, H., Takahashi, K., Katada, T., Inagami, T., Mapping of G protein coupling sites of the angiotensin II type 1 receptor (1995) Hypertension, 25, pp. 726-730
dc.descriptionBernstein, K.E., Ali, M.S., Sayeski, P.P., Semeniuk, D., Marrero, M.B., New insights into the cellular signaling of seven transmembrane receptors: The role of tyrosine phosphorylation (1998) Lab Invest, 78, pp. 3-7
dc.descriptionSadoshima, J., Versatility of the angiotensin II type 1 receptor (1998) Circ Res, 82, pp. 1352-1355
dc.descriptionIshida, M., Marrero, M.B., Schieffer, B., Ishida, T., Bernstein, K.E., Berk, B.C., Angiotensin II activates pp60c-src in vascular smooth muscle cells (1995) Circ Res, 77, pp. 1053-1059
dc.descriptionSadoshima, J., Izumo, S., The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes (1996) EMBO J, 15, pp. 775-787
dc.descriptionEguchi, S., Numaguchi, K., Iwasaki, H., Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells (1998) J Biol Chem, 273, pp. 8890-8896
dc.descriptionHeeneman, S., Haendeler, J., Saito, Y., Ishida, M., Berk, B.C., Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc (2000) J Biol Chem, 275, pp. 15926-15932
dc.descriptionVenema, R.C., Venema, V.J., Eaton, D.C., Marrero, M.B., Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1 (1998) J Biol Chem, 273, pp. 30795-30800
dc.descriptionMukoyama, M., Nakajima, M., Horiuchi, M., Sasamura, H., Pratt, R.E., Dzau, V.J., Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors (1993) J Biol Chem, 268, pp. 24539-24542
dc.descriptionStoll, M., Unger, T., Angiotensin and its AT2 receptor: New insights into an old system (2001) Regul Pept, 99, pp. 175-182
dc.descriptionCarey, R.M., Cardiovascular and renal regulation by the angiotensin type 2 receptor: The AT2 receptor comes of age (2005) Hypertension, 45, pp. 840-844
dc.descriptionHuang, X.C., Richards, E.M., Sumners, C., Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors (1996) J Biol Chem, 271, pp. 15635-15641
dc.descriptionZhu, M., Gelband, C.H., Moore, J.M., Posner, P., Sumners, C., Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid (1998) J Neurosci, 18, pp. 679-686
dc.descriptionSaad, M.J., Carvalho, C.R., Thirone, A.C., Velloso, L.A., Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat (1996) J Biol Chem, 271, pp. 22100-22104
dc.descriptionVelloso, L.A., Carvalho, C.R., Rojas, F.A., Folli, F., Saad, M.J., Insulin signaling in heart involves insulin receptor substrates-1 and -2, activation of phosphatidylinositol 3-kinase and the JAK 2-growth related pathway (1998) Cardiovasc Res, 40, pp. 96-102
dc.descriptionAraujo, E.P., De Souza, C.T., Gasparetti, A.L., Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity (2005) Endocrinology, 146, pp. 1428-1437
dc.descriptionHotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance (1996) Science, 271, pp. 665-668
dc.descriptionSykiotis, G.P., Papavassiliou, A.G., Serine phosphorylation of insulin receptor substrate-1: A novel target for the reversal of insulin resistance (2001) Mol Endocrinol, 15, pp. 1864-1869
dc.descriptionFeldman, R., ACE inhibitors versus AT1 blockers in the treatment of hypertension and syndrome X (2000) Can J Cardiol, 16 (SUPPL. E), pp. 41E-44E
dc.descriptionScheen, A.J., Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system (2004) Drugs, 64, pp. 2537-2565
dc.descriptionSaad, M.J., Velloso, L.A., Carvalho, C.R., Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart (1995) Biochem J, 310, pp. 741-744
dc.descriptionVelloso, L.A., Folli, F., Sun, X.J., White, M.F., Saad, M.J., Kahn, C.R., Cross-talk between the insulin and angiotensin signaling systems (1996) Proc Natl Acad Sci U S A, 93, pp. 12490-12495
dc.descriptionFolli, F., Kahn, C.R., Hansen, H., Bouchie, J.L., Feener, E.P., Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk (1997) J Clin Invest, 100, pp. 2158-2169
dc.descriptionMarrero, M.B., Schieffer, B., Paxton, W.G., Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor (1995) Nature, 375, pp. 247-250
dc.descriptionCarvalheira, J.B., Calegari, V.C., Zecchin, H.G., The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: Implications for insulin resistance (2003) Endocrinology, 144, pp. 5604-5614
dc.descriptionCarvalho, C.R., Thirone, A.C., Gontijo, J.A., Velloso, L.A., Saad, M.J., Effect of captopril, losartan, and bradykinin on early steps of insulin action (1997) Diabetes, 46, pp. 1950-1957
dc.descriptionTanti, J.F., Gremeaux, T., van Obberghen, E., Le Marchand-Brustel, Y., Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling (1994) J Biol Chem, 269, pp. 6051-6057
dc.descriptionMothe, I., van Obberghen, E., Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action (1996) J Biol Chem, 271, pp. 11222-11227
dc.descriptionAndreozzi, F., Laratta, E., Sciacqua, A., Perticone, F., Sesti, G., Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells (2004) Circ Res, 94, pp. 1211-1218
dc.descriptionJauch, K.W., Hartl, W., Guenther, B., Wicklmayr, M., Rett, K., Dietze, G., Captopril enhances insulin responsiveness of forearm muscle tissue in non-insulin-dependent diabetes mellitus (1987) Eur J Clin Invest, 17, pp. 448-454
dc.descriptionMoan, A., Risanger, T., Eide, I., Kjeldsen, S.E., The effect of Angiotensin II receptor blockade on insulin sensitivity and sympathetic nervous system activity in primary hypertension (1994) Blood Press, 3, pp. 185-188
dc.descriptionKurtz, T.W., Pravenec, M., Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and Angiotensin II receptor antagonists: Beyond the renin-angiotensin system (2004) J Hypertens, 22, pp. 2253-2261
dc.descriptionFukuda, N., Satoh, C., Hu, W.Y., Nakayama, M., Kishioka, H., Kanmatsuse, K., Endogenous Angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats (2001) J Hypertens, 19, pp. 1651-1658
dc.descriptionDamas, J., Garbacki, N., Lefebvre, P.J., The kallikrein-kinin system, angiotensin converting enzyme inhibitors and insulin sensitivity (2004) Diabetes Metab Res Rev, 20, pp. 288-297
dc.descriptionYvan-Charvet, L., Even, P., Bloch-Faure, M., Deletion of the Angiotensin Type 2 Receptor (AT2R) reduces Adipose cell size and protects from diet-induced obesity and Insulin resistance (2005) Diabetes, 54, pp. 991-999
dc.descriptionElbaz, N., Bedecs, K., Masson, M., Sutren, M., Strosberg, A.D., Nahmias, C., Functional trans-inactivation of insulin receptor kinase by growth-inhibitory angiotensin II AT2 receptor (2000) Mol Endocrinol, 14, pp. 795-804
dc.descriptionCui, T.X., Nakagami, H., Nahmias, C., Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells (2002) Mol Endocrinol, 16, pp. 2113-2123
dc.descriptionChiang, S.H., Baumann, C.A., Kanzaki, M., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 (2001) Nature, 410, pp. 944-948
dc.descriptionIshizaka, N., Griendling, K.K., Lassegue, B., Alexander, R.W., Angiotensin II type 1 receptor: Relationship with caveolae and caveolin after initial agonist stimulation (1998) Hypertension, 32, pp. 459-466
dc.descriptionLeclerc, P.C., Auger-Messier, M., Lanctot, P.M., Escher, E., Leduc, R., Guillemette, G., A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for Angiotensin II plays an important role in receptor trafficking and signaling (2002) Endocrinology, 143, pp. 4702-4710
dc.descriptionWyse, B.D., Prior, I.A., Qian, H., Caveolin interacts with the Angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane (2003) J Biol Chem, 278, pp. 23738-23746
dc.descriptionStrous, G.J., van Kerkhof, P., Govers, R., Ciechanover, A., Schwartz, A.L., The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor (1996) EMBO J, 15, pp. 3806-3812
dc.descriptionJiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L.C., Yi, T., Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1 (1996) Mol Cell Biol, 16, pp. 6985-6992
dc.descriptionHaque, S.J., Harbor, P., Tabrizi, M., Yi, T., Williams, B.R., Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- And IL-13-dependent signal transduction (1998) J Biol Chem, 273, pp. 33893-33896
dc.descriptionYou, M., Yu, D.H., Feng, G.S., Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway (1999) Mol Cell Biol, 19, pp. 2416-2424
dc.descriptionChung, C.D., Liao, J., Liu, B., Specific inhibition of Stat3 signal transduction by PIAS3 (1997) Science, 278, pp. 1803-1805
dc.descriptionLiu, B., Liao, J., Rao, X., Inhibition of Stat1-mediated gene activation by PIAS1 (1998) Proc Natl Acad Sci USA, 95, pp. 10626-10631
dc.descriptionKrebs, D.L., Hilton, D.J., SOCS: Physiological suppressors of cytokine signaling (2000) J Cell Sci, 113, pp. 2813-2819
dc.descriptionYoshimura, A., Ohkubo, T., Kiguchi, T., A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors (1995) EMBO J, 14, pp. 2816-2826
dc.descriptionStarr, R., Willson, T.A., Viney, E.M., A family of cytokine-inducible inhibitors of signaling (1997) Nature, 387, pp. 917-921
dc.descriptionEndo, T.A., Masuhara, M., Yokouchi, M., A new protein containing an SH2 domain that inhibits JAK kinases (1997) Nature, 387, pp. 921-924
dc.descriptionNaka, T., Narazaki, M., Hirata, M., Structure and function of a new STAT-induced STAT inhibitor (1997) Nature, 387, pp. 924-929
dc.descriptionHilton, D.J., Richardson, R.T., Alexander, W.S., Twenty proteins containing a C-terminal SOCS box form five structural classes (1998) Proc Natl Acad Sci U S A, 95, pp. 114-119
dc.descriptionRui, L., Yuan, M., Frantz, D., Shoelson, S., White, M.F., SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2 (2002) J Biol Chem, 277, pp. 42394-42398
dc.descriptionEmanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D., Van Obberghen, E., SOCS-3 is an insulin-induced negative regulator of insulin signaling (2000) J Biol Chem, 275, pp. 15985-15991
dc.descriptionSadowski, C.L., Choi, T.S., Le, M., Wheeler, T.T., Wang, L.H., Sadowski, H.B., Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5 (2001) J Biol Chem, 276, pp. 20703-20710
dc.descriptionEmanuelli, B., Peraldi, P., Filloux, C., SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice (2001) J Biol Chem, 276, pp. 47944-47949
dc.descriptionCalegari, V.C., Bezerra, R.M., Torsoni, M.A., Suppressor of cytokine signaling 3 is induced by Angiotensin II in heart and isolated cardiomyocytes, and participates in desensitization (2003) Endocrinology, 144, pp. 4586-4596
dc.descriptionTorsoni, M.A., Carvalheira, J.B., Calegari, V.C., Angiotensin II (AngII) induces the expression of suppressor of cytokine signaling (SOCS)-3 in rat hypothalamus - A mechanism for desensitization of AngII signaling (2004) J Endocrinol, 181, pp. 117-128
dc.descriptionCalegari, V.C., Alves, M., Picardi, P.K., Suppressor of cytokine signaling-3 provides a novel interface in the cross-talk between angiotensin II and insulin signaling systems (2005) Endocrinology, 146, pp. 579-588
dc.descriptionUeki, K., Kondo, T., Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms (2004) Mol Cell Biol, 24, pp. 5434-5446
dc.descriptionGiorgetti, S., Pelicci, P.G., Pelicci, G., Van Obberghen, E., Involvement of Src-homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-like-growth-factor-I-receptor (1994) Eur J Biochem, 223, pp. 195-202
dc.descriptionHolt, K.H., Kasson, B.G., Pessin, J.E., Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase (1996) Mol Cell Biol, 16, pp. 577-583
dc.descriptionSarbassov, D.D., Peterson, C.A., Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -Independent signaling pathways during myogenic differentiation (1998) Mol Endocrinol, 12, pp. 1870-1878
dc.descriptionEguchi, S., Iwasaki, H., Ueno, H., Intracellular signaling of Angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt (1999) J Biol Chem, 274, pp. 36843-36851
dc.descriptionWerry, T.D., Sexton, P.M., Christopoulos, A., "Ins and outs" Of seven-transmembrane receptor signaling to ERK (2005) Trends Endocrinol Metab, 16, pp. 26-33
dc.descriptionHunyady, L., Turu, G., The role of the AT1 angiotensin receptor in cardiac hypertrophy: Angiotensin II receptor or stretch sensor? (2004) Trends Endocrinol Metab, 15, pp. 405-408
dc.descriptionZou, Y., Komuro, I., Yamazaki, T., Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in Angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes (1996) J Biol Chem, 271, pp. 33592-33597
dc.descriptionZeng, G., Nystrom, F.H., Ravichandran, L.V., Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells (2000) Circulation, 101, pp. 1539-1545
dc.descriptionZecchin, H.G., Bezerra, R.M., Carvalheira, J.B., Insulin signaling pathways in aorta and muscle from two animal models of insulin resistance-obese middle-aged and spontaneously hypertensive rats (2003) Diabetologia, 46, pp. 479-491
dc.descriptionTouyz, R.M., Schiffrin, E.L., Signal transduction mechanisms mediating the physiological and pathophysiological actions of Angiotensin II in vascular smooth muscle cells (2000) Pharmacol Rev, 52, pp. 639-672
dc.descriptionKudoh, S., Komuro, I., Mizuno, T., Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats (1997) Circ Res, 80, pp. 139-146
dc.descriptionNickenig, G., Roling, J., Strehlow, K., Schnabel, P., Bohm, M., Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms (1998) Circulation, 98, pp. 2453-2460
dc.descriptionBanday, A.A., Siddiqui, A.H., Menezes, M.M., Hussain, T., Insulin treatment enhances AT1 receptor function in OK cells (2005) Am J Physiol Renal Physiol, 288, pp. F1213-F1219
dc.descriptionGolovchenko, I., Goalstone, M.L., Watson, P., Brownlee, M., Draznin, B., Hyperinsulinemia enhances transcriptional activity of nuclear factor-kappaB induced by Angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells (2000) Circ Res, 87, pp. 746-752
dc.languageen
dc.publisher
dc.relationDiabetes/Metabolism Research and Reviews
dc.rightsfechado
dc.sourceScopus
dc.titleThe Multi-faceted Cross-talk Between The Insulin And Angiotensin Ii Signaling Systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución