dc.creator | Velloso L.A. | |
dc.creator | Folli F. | |
dc.creator | Perego L. | |
dc.creator | Saad M.J.A. | |
dc.date | 2006 | |
dc.date | 2015-06-30T18:17:01Z | |
dc.date | 2015-11-26T14:28:58Z | |
dc.date | 2015-06-30T18:17:01Z | |
dc.date | 2015-11-26T14:28:58Z | |
dc.date.accessioned | 2018-03-28T21:32:12Z | |
dc.date.available | 2018-03-28T21:32:12Z | |
dc.identifier | | |
dc.identifier | Diabetes/metabolism Research And Reviews. , v. 22, n. 2, p. 98 - 107, 2006. | |
dc.identifier | 15207552 | |
dc.identifier | 10.1002/dmrr.611 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-33644982837&partnerID=40&md5=818b1e381ad4c9ca13c40a0451dc4dc5 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/103824 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/103824 | |
dc.identifier | 2-s2.0-33644982837 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1246732 | |
dc.description | Insulin and angiotensin II are hormones that play pivotal roles in the control of two vital and closely related systems, the metabolic and the circulatory systems, respectively. A failure in the proper action of each of these hormones results, to a variable degree, in the development of two highly prevalent and commonly overlapping diseases - diabetes mellitus and hypertension. In recent years, a series of studies has revealed a tight connection between the signal transduction pathways that mediate insulin and angiotensin II actions in target tissues. This molecular cross-talk occurs at multiple levels and plays an important role in phenomena that range from the action of anti-hypertensive drugs to cardiac hypertrophy and energy acquisition by the heart. At the extracellular level, the angiotensin-converting enzyme controls angiotensin II synthesis but also interferes with insulin signaling through the proper regulation of angiotensin II and through the accumulation of bradykinin. At an early intracellular level, angiotensin II, acting through JAK-2/IRS-1/PI3-kinase, JNK and ERK, may induce the serine phosphorylation and inhibition of key elements of the insulin-signaling pathway. Finally, by inducing the expression of the regulatory protein SOCS-3, angiotensin II may impose a late control on the insulin signal. This review will focus on the main advances obtained in this field and will discuss the implications of this molecular cross-talk in the common clinical association between diabetes mellitus and hypertension. Copyright © 2006 John Wiley & Sons, Ltd. | |
dc.description | 22 | |
dc.description | 2 | |
dc.description | 98 | |
dc.description | 107 | |
dc.description | Pessin, J.E., Saltiel, A.R., Signaling pathways in insulin action: Molecular targets of insulin resistance (2000) J Clin Invest, 106, pp. 165-169 | |
dc.description | Kahn, B.B., Flier, J.S., Obesity and insulin resistance (2000) J Clin Invest, 106, pp. 473-481 | |
dc.description | Olefsky, J.M., Saltiel, A.R., PPAR gamma and the treatment of insulin resistance (2000) Trends Endocrinol Metab, 11, pp. 362-368 | |
dc.description | Reaven, G., The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals (2004) Endocrinol Metab Clin North Am, 33, pp. 283-303 | |
dc.description | Wang, C.C., Goalstone, M.L., Draznin, B., Molecular mechanisms of insulin resistance that impact cardiovascular biology (2004) Diabetes, 53, pp. 2735-2740 | |
dc.description | Reaven, G., Abbasi, F., McLaughlin, T., Obesity, insulin resistance, and cardiovascular disease (2004) Recent Prog Horm Res, 59, pp. 207-223 | |
dc.description | Natali, A., Ferrannini, E., Hypertension, insulin resistance, and the metabolic syndrome (2004) Endocrinol Metab Clin North Am, 33, pp. 417-429 | |
dc.description | Shulman, G.I., Cellular mechanisms of insulin resistance in humans (1999) Am J Cardiol, 84, pp. 3J-10J | |
dc.description | Saltiel, A.R., Kahn, C.R., Insulin signaling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806 | |
dc.description | Malbon, C.C., Insulin signaling: Putting the 'G-' In protein-protein interactions (2004) Biochem J, 380, pp. e11-e12 | |
dc.description | Muller, G., Dynamics of plasma membrane microdomains and cross-talk to the insulin signaling cascade (2002) FEBS Lett, 531, pp. 81-87 | |
dc.description | Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of high Blood Cholesterol in Adults (Adult Treatment Panel III) (2001) JAMA, 285, pp. 2486-2497 | |
dc.description | Griendling, K.K., Lassegue, B., Murphy, T.J., Alexander, R.W., Angiotensin II receptor pharmacology (1994) Adv Pharmacol, 28, pp. 269-306 | |
dc.description | Shirai, H., Takahashi, K., Katada, T., Inagami, T., Mapping of G protein coupling sites of the angiotensin II type 1 receptor (1995) Hypertension, 25, pp. 726-730 | |
dc.description | Bernstein, K.E., Ali, M.S., Sayeski, P.P., Semeniuk, D., Marrero, M.B., New insights into the cellular signaling of seven transmembrane receptors: The role of tyrosine phosphorylation (1998) Lab Invest, 78, pp. 3-7 | |
dc.description | Sadoshima, J., Versatility of the angiotensin II type 1 receptor (1998) Circ Res, 82, pp. 1352-1355 | |
dc.description | Ishida, M., Marrero, M.B., Schieffer, B., Ishida, T., Bernstein, K.E., Berk, B.C., Angiotensin II activates pp60c-src in vascular smooth muscle cells (1995) Circ Res, 77, pp. 1053-1059 | |
dc.description | Sadoshima, J., Izumo, S., The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes (1996) EMBO J, 15, pp. 775-787 | |
dc.description | Eguchi, S., Numaguchi, K., Iwasaki, H., Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells (1998) J Biol Chem, 273, pp. 8890-8896 | |
dc.description | Heeneman, S., Haendeler, J., Saito, Y., Ishida, M., Berk, B.C., Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein Shc (2000) J Biol Chem, 275, pp. 15926-15932 | |
dc.description | Venema, R.C., Venema, V.J., Eaton, D.C., Marrero, M.B., Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1 (1998) J Biol Chem, 273, pp. 30795-30800 | |
dc.description | Mukoyama, M., Nakajima, M., Horiuchi, M., Sasamura, H., Pratt, R.E., Dzau, V.J., Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors (1993) J Biol Chem, 268, pp. 24539-24542 | |
dc.description | Stoll, M., Unger, T., Angiotensin and its AT2 receptor: New insights into an old system (2001) Regul Pept, 99, pp. 175-182 | |
dc.description | Carey, R.M., Cardiovascular and renal regulation by the angiotensin type 2 receptor: The AT2 receptor comes of age (2005) Hypertension, 45, pp. 840-844 | |
dc.description | Huang, X.C., Richards, E.M., Sumners, C., Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors (1996) J Biol Chem, 271, pp. 15635-15641 | |
dc.description | Zhu, M., Gelband, C.H., Moore, J.M., Posner, P., Sumners, C., Angiotensin II type 2 receptor stimulation of neuronal delayed-rectifier potassium current involves phospholipase A2 and arachidonic acid (1998) J Neurosci, 18, pp. 679-686 | |
dc.description | Saad, M.J., Carvalho, C.R., Thirone, A.C., Velloso, L.A., Insulin induces tyrosine phosphorylation of JAK2 in insulin-sensitive tissues of the intact rat (1996) J Biol Chem, 271, pp. 22100-22104 | |
dc.description | Velloso, L.A., Carvalho, C.R., Rojas, F.A., Folli, F., Saad, M.J., Insulin signaling in heart involves insulin receptor substrates-1 and -2, activation of phosphatidylinositol 3-kinase and the JAK 2-growth related pathway (1998) Cardiovasc Res, 40, pp. 96-102 | |
dc.description | Araujo, E.P., De Souza, C.T., Gasparetti, A.L., Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity (2005) Endocrinology, 146, pp. 1428-1437 | |
dc.description | Hotamisligil, G.S., Peraldi, P., Budavari, A., Ellis, R., White, M.F., Spiegelman, B.M., IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance (1996) Science, 271, pp. 665-668 | |
dc.description | Sykiotis, G.P., Papavassiliou, A.G., Serine phosphorylation of insulin receptor substrate-1: A novel target for the reversal of insulin resistance (2001) Mol Endocrinol, 15, pp. 1864-1869 | |
dc.description | Feldman, R., ACE inhibitors versus AT1 blockers in the treatment of hypertension and syndrome X (2000) Can J Cardiol, 16 (SUPPL. E), pp. 41E-44E | |
dc.description | Scheen, A.J., Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system (2004) Drugs, 64, pp. 2537-2565 | |
dc.description | Saad, M.J., Velloso, L.A., Carvalho, C.R., Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart (1995) Biochem J, 310, pp. 741-744 | |
dc.description | Velloso, L.A., Folli, F., Sun, X.J., White, M.F., Saad, M.J., Kahn, C.R., Cross-talk between the insulin and angiotensin signaling systems (1996) Proc Natl Acad Sci U S A, 93, pp. 12490-12495 | |
dc.description | Folli, F., Kahn, C.R., Hansen, H., Bouchie, J.L., Feener, E.P., Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk (1997) J Clin Invest, 100, pp. 2158-2169 | |
dc.description | Marrero, M.B., Schieffer, B., Paxton, W.G., Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor (1995) Nature, 375, pp. 247-250 | |
dc.description | Carvalheira, J.B., Calegari, V.C., Zecchin, H.G., The cross-talk between angiotensin and insulin differentially affects phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-mediated signaling in rat heart: Implications for insulin resistance (2003) Endocrinology, 144, pp. 5604-5614 | |
dc.description | Carvalho, C.R., Thirone, A.C., Gontijo, J.A., Velloso, L.A., Saad, M.J., Effect of captopril, losartan, and bradykinin on early steps of insulin action (1997) Diabetes, 46, pp. 1950-1957 | |
dc.description | Tanti, J.F., Gremeaux, T., van Obberghen, E., Le Marchand-Brustel, Y., Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling (1994) J Biol Chem, 269, pp. 6051-6057 | |
dc.description | Mothe, I., van Obberghen, E., Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action (1996) J Biol Chem, 271, pp. 11222-11227 | |
dc.description | Andreozzi, F., Laratta, E., Sciacqua, A., Perticone, F., Sesti, G., Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells (2004) Circ Res, 94, pp. 1211-1218 | |
dc.description | Jauch, K.W., Hartl, W., Guenther, B., Wicklmayr, M., Rett, K., Dietze, G., Captopril enhances insulin responsiveness of forearm muscle tissue in non-insulin-dependent diabetes mellitus (1987) Eur J Clin Invest, 17, pp. 448-454 | |
dc.description | Moan, A., Risanger, T., Eide, I., Kjeldsen, S.E., The effect of Angiotensin II receptor blockade on insulin sensitivity and sympathetic nervous system activity in primary hypertension (1994) Blood Press, 3, pp. 185-188 | |
dc.description | Kurtz, T.W., Pravenec, M., Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and Angiotensin II receptor antagonists: Beyond the renin-angiotensin system (2004) J Hypertens, 22, pp. 2253-2261 | |
dc.description | Fukuda, N., Satoh, C., Hu, W.Y., Nakayama, M., Kishioka, H., Kanmatsuse, K., Endogenous Angiotensin II suppresses insulin signaling in vascular smooth muscle cells from spontaneously hypertensive rats (2001) J Hypertens, 19, pp. 1651-1658 | |
dc.description | Damas, J., Garbacki, N., Lefebvre, P.J., The kallikrein-kinin system, angiotensin converting enzyme inhibitors and insulin sensitivity (2004) Diabetes Metab Res Rev, 20, pp. 288-297 | |
dc.description | Yvan-Charvet, L., Even, P., Bloch-Faure, M., Deletion of the Angiotensin Type 2 Receptor (AT2R) reduces Adipose cell size and protects from diet-induced obesity and Insulin resistance (2005) Diabetes, 54, pp. 991-999 | |
dc.description | Elbaz, N., Bedecs, K., Masson, M., Sutren, M., Strosberg, A.D., Nahmias, C., Functional trans-inactivation of insulin receptor kinase by growth-inhibitory angiotensin II AT2 receptor (2000) Mol Endocrinol, 14, pp. 795-804 | |
dc.description | Cui, T.X., Nakagami, H., Nahmias, C., Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells (2002) Mol Endocrinol, 16, pp. 2113-2123 | |
dc.description | Chiang, S.H., Baumann, C.A., Kanzaki, M., Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10 (2001) Nature, 410, pp. 944-948 | |
dc.description | Ishizaka, N., Griendling, K.K., Lassegue, B., Alexander, R.W., Angiotensin II type 1 receptor: Relationship with caveolae and caveolin after initial agonist stimulation (1998) Hypertension, 32, pp. 459-466 | |
dc.description | Leclerc, P.C., Auger-Messier, M., Lanctot, P.M., Escher, E., Leduc, R., Guillemette, G., A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for Angiotensin II plays an important role in receptor trafficking and signaling (2002) Endocrinology, 143, pp. 4702-4710 | |
dc.description | Wyse, B.D., Prior, I.A., Qian, H., Caveolin interacts with the Angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane (2003) J Biol Chem, 278, pp. 23738-23746 | |
dc.description | Strous, G.J., van Kerkhof, P., Govers, R., Ciechanover, A., Schwartz, A.L., The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor (1996) EMBO J, 15, pp. 3806-3812 | |
dc.description | Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L.C., Yi, T., Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1 (1996) Mol Cell Biol, 16, pp. 6985-6992 | |
dc.description | Haque, S.J., Harbor, P., Tabrizi, M., Yi, T., Williams, B.R., Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- And IL-13-dependent signal transduction (1998) J Biol Chem, 273, pp. 33893-33896 | |
dc.description | You, M., Yu, D.H., Feng, G.S., Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway (1999) Mol Cell Biol, 19, pp. 2416-2424 | |
dc.description | Chung, C.D., Liao, J., Liu, B., Specific inhibition of Stat3 signal transduction by PIAS3 (1997) Science, 278, pp. 1803-1805 | |
dc.description | Liu, B., Liao, J., Rao, X., Inhibition of Stat1-mediated gene activation by PIAS1 (1998) Proc Natl Acad Sci USA, 95, pp. 10626-10631 | |
dc.description | Krebs, D.L., Hilton, D.J., SOCS: Physiological suppressors of cytokine signaling (2000) J Cell Sci, 113, pp. 2813-2819 | |
dc.description | Yoshimura, A., Ohkubo, T., Kiguchi, T., A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors (1995) EMBO J, 14, pp. 2816-2826 | |
dc.description | Starr, R., Willson, T.A., Viney, E.M., A family of cytokine-inducible inhibitors of signaling (1997) Nature, 387, pp. 917-921 | |
dc.description | Endo, T.A., Masuhara, M., Yokouchi, M., A new protein containing an SH2 domain that inhibits JAK kinases (1997) Nature, 387, pp. 921-924 | |
dc.description | Naka, T., Narazaki, M., Hirata, M., Structure and function of a new STAT-induced STAT inhibitor (1997) Nature, 387, pp. 924-929 | |
dc.description | Hilton, D.J., Richardson, R.T., Alexander, W.S., Twenty proteins containing a C-terminal SOCS box form five structural classes (1998) Proc Natl Acad Sci U S A, 95, pp. 114-119 | |
dc.description | Rui, L., Yuan, M., Frantz, D., Shoelson, S., White, M.F., SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2 (2002) J Biol Chem, 277, pp. 42394-42398 | |
dc.description | Emanuelli, B., Peraldi, P., Filloux, C., Sawka-Verhelle, D., Hilton, D., Van Obberghen, E., SOCS-3 is an insulin-induced negative regulator of insulin signaling (2000) J Biol Chem, 275, pp. 15985-15991 | |
dc.description | Sadowski, C.L., Choi, T.S., Le, M., Wheeler, T.T., Wang, L.H., Sadowski, H.B., Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5 (2001) J Biol Chem, 276, pp. 20703-20710 | |
dc.description | Emanuelli, B., Peraldi, P., Filloux, C., SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice (2001) J Biol Chem, 276, pp. 47944-47949 | |
dc.description | Calegari, V.C., Bezerra, R.M., Torsoni, M.A., Suppressor of cytokine signaling 3 is induced by Angiotensin II in heart and isolated cardiomyocytes, and participates in desensitization (2003) Endocrinology, 144, pp. 4586-4596 | |
dc.description | Torsoni, M.A., Carvalheira, J.B., Calegari, V.C., Angiotensin II (AngII) induces the expression of suppressor of cytokine signaling (SOCS)-3 in rat hypothalamus - A mechanism for desensitization of AngII signaling (2004) J Endocrinol, 181, pp. 117-128 | |
dc.description | Calegari, V.C., Alves, M., Picardi, P.K., Suppressor of cytokine signaling-3 provides a novel interface in the cross-talk between angiotensin II and insulin signaling systems (2005) Endocrinology, 146, pp. 579-588 | |
dc.description | Ueki, K., Kondo, T., Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms (2004) Mol Cell Biol, 24, pp. 5434-5446 | |
dc.description | Giorgetti, S., Pelicci, P.G., Pelicci, G., Van Obberghen, E., Involvement of Src-homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-like-growth-factor-I-receptor (1994) Eur J Biochem, 223, pp. 195-202 | |
dc.description | Holt, K.H., Kasson, B.G., Pessin, J.E., Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase (1996) Mol Cell Biol, 16, pp. 577-583 | |
dc.description | Sarbassov, D.D., Peterson, C.A., Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -Independent signaling pathways during myogenic differentiation (1998) Mol Endocrinol, 12, pp. 1870-1878 | |
dc.description | Eguchi, S., Iwasaki, H., Ueno, H., Intracellular signaling of Angiotensin II-induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal-regulated kinase, and Akt (1999) J Biol Chem, 274, pp. 36843-36851 | |
dc.description | Werry, T.D., Sexton, P.M., Christopoulos, A., "Ins and outs" Of seven-transmembrane receptor signaling to ERK (2005) Trends Endocrinol Metab, 16, pp. 26-33 | |
dc.description | Hunyady, L., Turu, G., The role of the AT1 angiotensin receptor in cardiac hypertrophy: Angiotensin II receptor or stretch sensor? (2004) Trends Endocrinol Metab, 15, pp. 405-408 | |
dc.description | Zou, Y., Komuro, I., Yamazaki, T., Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in Angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes (1996) J Biol Chem, 271, pp. 33592-33597 | |
dc.description | Zeng, G., Nystrom, F.H., Ravichandran, L.V., Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells (2000) Circulation, 101, pp. 1539-1545 | |
dc.description | Zecchin, H.G., Bezerra, R.M., Carvalheira, J.B., Insulin signaling pathways in aorta and muscle from two animal models of insulin resistance-obese middle-aged and spontaneously hypertensive rats (2003) Diabetologia, 46, pp. 479-491 | |
dc.description | Touyz, R.M., Schiffrin, E.L., Signal transduction mechanisms mediating the physiological and pathophysiological actions of Angiotensin II in vascular smooth muscle cells (2000) Pharmacol Rev, 52, pp. 639-672 | |
dc.description | Kudoh, S., Komuro, I., Mizuno, T., Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats (1997) Circ Res, 80, pp. 139-146 | |
dc.description | Nickenig, G., Roling, J., Strehlow, K., Schnabel, P., Bohm, M., Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms (1998) Circulation, 98, pp. 2453-2460 | |
dc.description | Banday, A.A., Siddiqui, A.H., Menezes, M.M., Hussain, T., Insulin treatment enhances AT1 receptor function in OK cells (2005) Am J Physiol Renal Physiol, 288, pp. F1213-F1219 | |
dc.description | Golovchenko, I., Goalstone, M.L., Watson, P., Brownlee, M., Draznin, B., Hyperinsulinemia enhances transcriptional activity of nuclear factor-kappaB induced by Angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells (2000) Circ Res, 87, pp. 746-752 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Diabetes/Metabolism Research and Reviews | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | The Multi-faceted Cross-talk Between The Insulin And Angiotensin Ii Signaling Systems | |
dc.type | Artículos de revistas | |